[スポンサーリンク]

ケムステニュース

クラリベイト・アナリティクスが「引用栄誉賞2017」を発表

9月20日に、クラリベイト・アナリティクス社から2017年の引用栄誉賞が発表されました。昨年までのトムソン・ロイター引用栄誉賞(ノーベル賞予測)の後身で、引用データの分析から特にインパクトが大きかった研究に対して与えられる賞で毎年ノーベル賞の発表の直前に公表されています。医学生理学、物理学、化学分野から今年は計22名の研究者が受賞しました。なお、後述するように日本からは桐蔭横浜大学の宮坂 力(みやさか つとむ)教授が選出されています!

本賞の受賞者は有力なノーベル賞候補でもありますので、この記事では化学分野の受賞者を簡単に紹介したいと思います。

C-H活性化に対する決定的な貢献

John E. Bercaw (Caltech, アメリカ合衆国)
Robert G. Bergman (University of California Berkeley, アメリカ合衆国)
Georgiy B. Shul’pin (Russian Academy of Sciences Moscow, ロシア)

C-H結合は最も頻繁に存在する結合の一つで、活性化して官能基化できれば合成の多様性を爆発的に広げることができます。安定で不活性なC-H結合を活性化するという挑戦的な課題に対して、三人はそれぞれ独自の貢献をしています。

Bercaw教授はC-H活性化の反応開発と反応機構の理解に関して大きな貢献をしており[1]、これはAlexander E. Shilovと共にShul’pin教授により見出された金属錯体の光反応によるC-H活性化、例えばプラチナハライドを用いた飽和炭化水素の水酸基化[2]に端を発しています。Bergman教授も当該分野のパイオニアの一人で、ジヒドリドIr錯体を用いた光反応により飽和/不飽和C-Hの活性化を発見しています[3]。

生体内ではCYP450に代表される酵素反応によって炭化水素の酸化反応が行われていることが知られていますが、合成化学の場でも上記の反応を生体模倣的に導入することができれば、天然物合成など複雑分子の合成においてより効率化な経路を提案できると考えられます。また、メタン→メタノールの変換などは温室効果ガスを燃料に変える反応と捉えることもできるため、環境問題やエネルギー問題にも繋がる応用が期待されます。従来不活性と考えられていた部分に切り込むことで、常識を覆す様々な可能性を秘めた画期的な成果です。

図1: (A) Shul’pin教授らにより発見され、Bercaw教授らにより機構解明されたプラチナハライド錯体による飽和化炭化水素の水酸基化反応。(B) Bergman教授らにより見出されたジヒドリドIr錯体を用いた光反応によるC-H活性化。文献[1,3]より引用。

固体表面上の不均一系触媒に関する、理論的かつ実用的な基礎的進歩

Jens Nørskov (Stanford University, アメリカ合衆国)

不均一触媒において表面・界面は、分子が出会い反応が進行する舞台であり、ミクロなレベルで反応を理解する上で極めて重要です。反応機構の研究では計算科学によるアプローチが非常に強力ですが、表面・界面は対称性が破れていることからバルク(固体の“内部”のこと)と比較して大きく異なる性質を示すことが多々あり、議論に耐える精度の計算を行うことは非常に困難でした。

Nørskov教授は交換・相関エネルギーを適切に考慮することで様々な遷移金属表面に対して分子の吸着エネルギーの計算精度を劇的に高めることに成功し[4]、これをきっかけとして多岐にわたるシステムについて吸着状態・反応機構の解明を行っています。中でも目を引くのは燃料電池の電極界面における酸素の還元に関する研究[5]や、特に最近展開している常圧でのアンモニア合成法の提案とデモンストレーションです[6]。これは高温高圧を必要とするハーバー・ボッシュ法の弱点を克服した手法で、大きなブレークスルーになる可能性を秘めています。このように、基礎的に極めて重要な貢献をしたことに加えて、計算から触媒反応をデザインする実用を視野に入れた研究スタンスが高く評価されて受賞に至ったものと思われます。

図2:提案された新規アンモニア合成法の模式図。文献[6]より引用。

効率的なエネルギー変換を達成するためのペロブスカイト材料の発見と応用

宮坂 力 (桐蔭横浜大学, 日本)
Nam-Gyu Park (Sungkyunkwan University, 韓国)
Henry J. Snaith (University of Oxford, イギリス)

ペロブスカイト太陽電池、というフレーズを耳にしたことがある方もだいぶ増えてきたのではないでしょうか。これは太陽電池業界の超新星で、太陽電池の開発の歴史の中でもかつてない速度で急成長を遂げており、出始めて5年のうちに20%以上の効率を達成しています。

正確には、ペロブスカイトという言葉は組成比ABX3の結晶構造のことで、その中でAサイトに有機分子(典型的にはメチルアンモニウムカチオン、CH3NH3)、Bサイトに鉛カチオン、Xサイトにハロゲンといった組み合わせのものが主に研究されています。鉛ハライドの八面体でできた格子の隙間に有機分子が入り込んでいるような構造、といえばイメージしやすいかもしれません。有機と無機のハイブリッド化合物なので、単にハイブリッドペロブスカイトと呼ばれることも多いです。出始めのころはCH3NH3 Pb I3がほとんどでしたが、最近はいろいろな組み合わせが模索されています。

図X:有機無機ハイブリッド鉛ハライドペロブスカイトの構造の模式図。ペロブスカイト構造ABX3で、A=CH3NH3, B=Pb, X=Iの組み合わせが多く用いられている。

宮坂教授は2009年にCH3NH3PbI3を色素増感太陽電池の増感剤として用い、変換効率3.8%を報告しました[7]。この論文は鉛ハライドペロブスカイトの太陽電池材料として着目した世界で初めての研究でした。主にイオン輸送のための液体層が問題で安定性、効率に難がありましたが、2011年にPark教授が初めてデバイスの全固体化に成功し[8]、2012年にはSnaith教授が宮坂教授とともに効率10%を達成してから[9]全世界で爆発的に研究が進められています。なお、色素増感電池の発明者で知られているMichael Graetzel教授も簡便なデバイス作製手法を開発し、この分野で非常に大きな貢献をしています[10]。

太陽電池以外にも発光デバイスや光検出器など、オプトエレクトロニクス全般にわたる研究が展開されており、物性そのものの微視的な理解を目指した研究も盛んになってきています。基礎・応用双方の観点から、今後も目が離せません。

 

さて、果たしてこの中からノーベル化学賞が出るでしょうか!? 10/4が待ち遠しいですね!

 

謝辞:C-H活性化の記事はコロンビア大学化学科 博士研究員の岩田隆さんにご協力いただきました。

関連文献

  1. “C-H activation by aqueous platinum complexes: A mechanistic study” Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Org. Chem. 1995, 504, 75. DOI: 10.1016/0022-328X(95)05567-9
  2. “Activation and catalytic reactions of alkanes in solutions of metal
    complexes” Shilov, A. E.; Shulpin, G. B. Russ. Chem. Rev. 1987, 56, 442. DOI: 10.1070/RC1987v056n05ABEH003282 
  3. “Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H .fwdarw. M(R)(H)” Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc 1982, 104, 352. DOI: 10.1021/ja00365a091
  4. “Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals” Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. DOI: 10.1103/PhysRevB.59.7413
  5. “Origin of the overpotential for oxygen reduction at a fuel-cell cathode” Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin,J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. DOI: 10.1021/jp047349j
  6. ”Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure” Joshua, M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K. Energy Environ. Sci. 2017, 10, 1621. DOI: 10.1039/C7EE01126A
  7. ”Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Ame. Chem. Soc. 2009, 131, 6059. DOI: 10.1021/ja809598r
  8. ”Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%” Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehi, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591. DOI: 10.1038/srep00591
  9. ”Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites” Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. DOI: 10.1126/science.1228604
  10. ”Sequential deposition as a route to high-performance perovskite-sensitized solar cells” Burschka, J.; Pellet, N.; Moon, S. J.;  Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. DOI: 10.1038/nature12340

関連リンク

  1. Identifying extreme impact in research, Clarivate Analytics uses citations to forecast Nobel Prize winners
  2. クラリベイト・アナリティクスが「引用栄誉賞」を発表
    2017年 日本からの受賞者は1名
  3. ことしのノーベル賞予想に日本人研究者
    (NHKによる宮坂先生へのインタビューあり)
The following two tabs change content below.
ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 投票!2014年ノーベル化学賞は誰の手に??
  2. 2012年Wolf化学賞はナノケミストリーのLieber博士,A…
  3. 積水化学、工業用接着剤で米最大手と提携
  4. ポリフェノールに食品アレルギー予防効果
  5. 旭化成 繊維事業がようやく底入れ
  6. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカル…
  7. フリーラジカルの祖は一体誰か?
  8. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. as well asの使い方
  2. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  3. 生きたカタツムリで発電
  4. Z-選択的オレフィンメタセシス
  5. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  6. 第94回日本化学会付設展示会ケムステキャンペーン!Part II
  7. 単一細胞レベルで集団を解析
  8. エリック・カレイラ Erick M. Carreira
  9. 赤﨑 勇 Isamu Akasaki
  10. パール・クノール フラン合成 Paal-Knorr Furan Synthesis

関連商品

注目情報

注目情報

最新記事

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

Chem-Station Twitter

PAGE TOP