[スポンサーリンク]

ケムステニュース

クラリベイト・アナリティクスが「引用栄誉賞2017」を発表

[スポンサーリンク]

9月20日に、クラリベイト・アナリティクス社から2017年の引用栄誉賞が発表されました。昨年までのトムソン・ロイター引用栄誉賞(ノーベル賞予測)の後身で、引用データの分析から特にインパクトが大きかった研究に対して与えられる賞で毎年ノーベル賞の発表の直前に公表されています。医学生理学、物理学、化学分野から今年は計22名の研究者が受賞しました。なお、後述するように日本からは桐蔭横浜大学の宮坂 力(みやさか つとむ)教授が選出されています!

本賞の受賞者は有力なノーベル賞候補でもありますので、この記事では化学分野の受賞者を簡単に紹介したいと思います。

C-H活性化に対する決定的な貢献

John E. Bercaw (Caltech, アメリカ合衆国)
Robert G. Bergman (University of California Berkeley, アメリカ合衆国)
Georgiy B. Shul’pin (Russian Academy of Sciences Moscow, ロシア)

C-H結合は最も頻繁に存在する結合の一つで、活性化して官能基化できれば合成の多様性を爆発的に広げることができます。安定で不活性なC-H結合を活性化するという挑戦的な課題に対して、三人はそれぞれ独自の貢献をしています。

Bercaw教授はC-H活性化の反応開発と反応機構の理解に関して大きな貢献をしており[1]、これはAlexander E. Shilovと共にShul’pin教授により見出された金属錯体の光反応によるC-H活性化、例えばプラチナハライドを用いた飽和炭化水素の水酸基化[2]に端を発しています。Bergman教授も当該分野のパイオニアの一人で、ジヒドリドIr錯体を用いた光反応により飽和/不飽和C-Hの活性化を発見しています[3]。

生体内ではCYP450に代表される酵素反応によって炭化水素の酸化反応が行われていることが知られていますが、合成化学の場でも上記の反応を生体模倣的に導入することができれば、天然物合成など複雑分子の合成においてより効率化な経路を提案できると考えられます。また、メタン→メタノールの変換などは温室効果ガスを燃料に変える反応と捉えることもできるため、環境問題やエネルギー問題にも繋がる応用が期待されます。従来不活性と考えられていた部分に切り込むことで、常識を覆す様々な可能性を秘めた画期的な成果です。

図1: (A) Shul’pin教授らにより発見され、Bercaw教授らにより機構解明されたプラチナハライド錯体による飽和化炭化水素の水酸基化反応。(B) Bergman教授らにより見出されたジヒドリドIr錯体を用いた光反応によるC-H活性化。文献[1,3]より引用。

固体表面上の不均一系触媒に関する、理論的かつ実用的な基礎的進歩

Jens Nørskov (Stanford University, アメリカ合衆国)

不均一触媒において表面・界面は、分子が出会い反応が進行する舞台であり、ミクロなレベルで反応を理解する上で極めて重要です。反応機構の研究では計算科学によるアプローチが非常に強力ですが、表面・界面は対称性が破れていることからバルク(固体の“内部”のこと)と比較して大きく異なる性質を示すことが多々あり、議論に耐える精度の計算を行うことは非常に困難でした。

Nørskov教授は交換・相関エネルギーを適切に考慮することで様々な遷移金属表面に対して分子の吸着エネルギーの計算精度を劇的に高めることに成功し[4]、これをきっかけとして多岐にわたるシステムについて吸着状態・反応機構の解明を行っています。中でも目を引くのは燃料電池の電極界面における酸素の還元に関する研究[5]や、特に最近展開している常圧でのアンモニア合成法の提案とデモンストレーションです[6]。これは高温高圧を必要とするハーバー・ボッシュ法の弱点を克服した手法で、大きなブレークスルーになる可能性を秘めています。このように、基礎的に極めて重要な貢献をしたことに加えて、計算から触媒反応をデザインする実用を視野に入れた研究スタンスが高く評価されて受賞に至ったものと思われます。

図2:提案された新規アンモニア合成法の模式図。文献[6]より引用。

効率的なエネルギー変換を達成するためのペロブスカイト材料の発見と応用

宮坂 力 (桐蔭横浜大学, 日本)
Nam-Gyu Park (Sungkyunkwan University, 韓国)
Henry J. Snaith (University of Oxford, イギリス)

ペロブスカイト太陽電池、というフレーズを耳にしたことがある方もだいぶ増えてきたのではないでしょうか。これは太陽電池業界の超新星で、太陽電池の開発の歴史の中でもかつてない速度で急成長を遂げており、出始めて5年のうちに20%以上の効率を達成しています。

正確には、ペロブスカイトという言葉は組成比ABX3の結晶構造のことで、その中でAサイトに有機分子(典型的にはメチルアンモニウムカチオン、CH3NH3)、Bサイトに鉛カチオン、Xサイトにハロゲンといった組み合わせのものが主に研究されています。鉛ハライドの八面体でできた格子の隙間に有機分子が入り込んでいるような構造、といえばイメージしやすいかもしれません。有機と無機のハイブリッド化合物なので、単にハイブリッドペロブスカイトと呼ばれることも多いです。出始めのころはCH3NH3 Pb I3がほとんどでしたが、最近はいろいろな組み合わせが模索されています。

図X:有機無機ハイブリッド鉛ハライドペロブスカイトの構造の模式図。ペロブスカイト構造ABX3で、A=CH3NH3, B=Pb, X=Iの組み合わせが多く用いられている。

宮坂教授は2009年にCH3NH3PbI3を色素増感太陽電池の増感剤として用い、変換効率3.8%を報告しました[7]。この論文は鉛ハライドペロブスカイトの太陽電池材料として着目した世界で初めての研究でした。主にイオン輸送のための液体層が問題で安定性、効率に難がありましたが、2011年にPark教授が初めてデバイスの全固体化に成功し[8]、2012年にはSnaith教授が宮坂教授とともに効率10%を達成してから[9]全世界で爆発的に研究が進められています。なお、色素増感電池の発明者で知られているMichael Graetzel教授も簡便なデバイス作製手法を開発し、この分野で非常に大きな貢献をしています[10]。

太陽電池以外にも発光デバイスや光検出器など、オプトエレクトロニクス全般にわたる研究が展開されており、物性そのものの微視的な理解を目指した研究も盛んになってきています。基礎・応用双方の観点から、今後も目が離せません。

 

さて、果たしてこの中からノーベル化学賞が出るでしょうか!? 10/4が待ち遠しいですね!

 

謝辞:C-H活性化の記事はコロンビア大学化学科 博士研究員の岩田隆さんにご協力いただきました。

関連文献

  1. “C-H activation by aqueous platinum complexes: A mechanistic study” Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Org. Chem. 1995, 504, 75. DOI: 10.1016/0022-328X(95)05567-9
  2. “Activation and catalytic reactions of alkanes in solutions of metal
    complexes” Shilov, A. E.; Shulpin, G. B. Russ. Chem. Rev. 1987, 56, 442. DOI: 10.1070/RC1987v056n05ABEH003282 
  3. “Carbon-hydrogen activation in completely saturated hydrocarbons: direct observation of M + R-H .fwdarw. M(R)(H)” Janowicz, A. H.; Bergman, R. G. J. Am. Chem. Soc 1982, 104, 352. DOI: 10.1021/ja00365a091
  4. “Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals” Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. DOI: 10.1103/PhysRevB.59.7413
  5. “Origin of the overpotential for oxygen reduction at a fuel-cell cathode” Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin,J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. DOI: 10.1021/jp047349j
  6. ”Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure” Joshua, M.; Singh, A. R.; Schwalbe, J. A.; Kibsgaard, J.; Lin, J. C.; Cargnello, M.; Jaramillo, T. F.; Nørskov, J. K. Energy Environ. Sci. 2017, 10, 1621. DOI: 10.1039/C7EE01126A
  7. ”Organometal halide perovskites as visible-light sensitizers for photovoltaic cells” Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Ame. Chem. Soc. 2009, 131, 6059. DOI: 10.1021/ja809598r
  8. ”Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%” Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehi, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Sci. Rep. 2012, 2, 591. DOI: 10.1038/srep00591
  9. ”Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites” Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. DOI: 10.1126/science.1228604
  10. ”Sequential deposition as a route to high-performance perovskite-sensitized solar cells” Burschka, J.; Pellet, N.; Moon, S. J.;  Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316. DOI: 10.1038/nature12340

関連リンク

  1. Identifying extreme impact in research, Clarivate Analytics uses citations to forecast Nobel Prize winners
  2. クラリベイト・アナリティクスが「引用栄誉賞」を発表
    2017年 日本からの受賞者は1名
  3. ことしのノーベル賞予想に日本人研究者
    (NHKによる宮坂先生へのインタビューあり)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JK。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. BASFクリエータースペース:議論とチャレンジ
  2. 国際化学オリンピック2016でもメダルラッシュ!
  3. アミンの新合成法2
  4. タルセバ、すい臓がんではリスクが利点を上回る可能性 =FDA
  5. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ
  6. オペレーションはイノベーションの夢を見るか? その2
  7. 花王、ワキガ臭の発生メカニズムを解明など研究成果を発表
  8. 核のごみを貴金属に 現代の錬金術、実験へ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 還元的脱硫反応 Reductive Desulfurization
  2. 有機合成化学協会誌2021年7月号:PoxIm・トリアルキルシリル基・金触媒・アンフィジノール3・効率的クリック標識法・標的タンパク質指向型天然物単離
  3. 親子で楽しめる化学映像集 その1
  4. 柴崎・東大教授が英化学会メダル受賞
  5. 高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–
  6. 2021年、ムーアの法則が崩れる?
  7. ライアン・シェンビ Ryan A. Shenvi
  8. 非選択性茎葉処理除草剤の『ザクサ液剤』を登録申請
  9. 「株式会社未来創薬研究所」を設立
  10. 実験室の笑える?笑えない!事故実例集

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP