[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~フォトレジスト編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は、現代にいたるフォトレジストの歩みについて触れていきます。

Photoresist

フォトレジスト(画像:Wikipedia

初期のゴム系レジスト

フォトリソグラフィ技術の黎明は、1955年、ベル研究所のJules AndrusとWalter L. Bondによって開発されたものに遡ります。これは写真技術を応用したもので、写真用品で著名なEastman Kodak社のKPR(Kodak Photoresist)が使われました。KPRはゴム感光材を添加することで露光により架橋するもので、基板との密着性を優先させたものでした。しかしながら、フォトマスクがレジストと密着するコンタクト露光方式のため、マスクの解像度がレジストの解像度を規定してしまう点など、微細加工には限界がありました。

ゴム系ネガ型レジストの架橋反応(画像:Wikipedia

ポジ型フォトレジストの席巻

微細加工を行う上では、フォトマスクとレジスト表面とを非接触の状態で露光する投影露光方式に適し、より解像度の高いポジ型フォトレジストが有利です。しかしながら、ポジ型レジストは脆性が高く膜割れしやすいという欠点があり、米国企業のネガ型フォトレジストが主流となっていました。

東京応化工業はこうしたポジ型フォトレジストの改良に取り組み、その結果ノボラック樹脂を基盤とし、感光剤としてNQD(ナフトキノンジアジド)を用いたレジストを開発しました。

これは塩基性の現像液であるTMAH(テトラメチルアンモニウムヒドロキシド)に不溶ですが、光によってカルベンが発生、ウルフ転位(Wolff rearrangement)と続く求核攻撃によってインデンカルボン酸を与え、可溶化する仕組みです。

ウルフ転位を利用した初期のポジ型レジスト(画像:Wikipedia

これによってg-line(436nm)や i-line(365nm)での縮小露光が可能となり、大いに微細化に貢献しました。とりわけi線分野では老舗の東京応化工業に加えて住友化学も大きくシェアを伸ばしました。しかしながら、ノボラック樹脂はより短波長の光を吸収してしまうため、この露光波長が解像度の限界でした。

光酸発生剤と化学増幅型レジスト

従来の水銀灯と比べて短波長の光源として、かねてよりエキシマレーザーの利用が脚光を浴びていました。KrFエキシマレーザー光(248nm)は先のノボラック樹脂に吸収されてしまうことから、水酸基を保護したポリヒドロキシスチレン(PHS樹脂へと変更、IBMの伊藤洋とC. G. Wilsonが開発した光酸発生剤を用いた酸触媒反応により脱保護を行うことで溶解性を変化させる手法が確立されました。このようなレジストは化学増幅型レジストと呼ばれます。

光酸発生剤としてはスルホニウム塩が、保護基としてはBocが広く利用され、露光するとフェノール性水酸基が露出して塩基に可溶となります。

この分野では東京応化工業に並び、信越化学工業も名乗りを上げるなど、多極化が進みました。

化学増幅型レジストの原理(画像:Wikipedia

エキシマレーザーと液浸の普及

その後、より短波長のArFエキシマレーザー(193nm)がもちいられるようになると、KrFレジストに用いられていたベンゼン骨格に二重結合をもつPHS樹脂はこれを吸収してしまうため、アクリル樹脂が利用されるようになります。この技術はJSR、富士通、日本電気(NEC)も開発に成功し、JSRが首位に躍り出るなど一層の多極化が進んでいます。

ArF対応レジストの一例(画像:Wikipedia

また、ArFでは、フォトマスクとレジストの間に水の層を作って露光する液浸が本格的に普及し、解像度の向上に寄与しました。

次世代EUVレジスト

微細化の要求は日に日に高まりを見せ、2020年現在では10 nm以下の解像度が求められるようになっています。その実現のため、極端紫外線EUV(13.5nm)の時代が幕を開けようとしています。この波長域はもはやX線に近く、ほとんどの物質が吸収してしまうために液浸はおろか、真空中での露光が必要となります。EUVレジストには従来通り光酸発生剤を起点とする方式のほか、露光によるベース樹脂の電離(イオン化を用いて励起するアプローチ[1]もあります。後者には、EUV光の吸収特性が良好な含フッ素樹脂の利用が嘱望されています。

様々な技術的困難を乗り越えたフォトリソグラフィ技術が今後どのような発展をたどるのか、楽しみですね。

参考文献

[1] 征矢野 晃雅, フォトレジスト材料における高分子材料技術, 日本ゴム協会誌, 2012, 85 巻, 2 号, p. 33-39, 公開日 2013/08/02, Print ISSN 0029-022X, doi:10.2324/gomu.85.33

関連リンク

東京応化工業 フォトレジストの歴史

日本半導体歴史館

戦後日本のイノベーション100選

関連書籍

 

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リ…
  2. 自己修復する単一分子素子「DNAジッパー」
  3. 世界最高の耐久性を示すプロパン脱水素触媒
  4. 陶磁器釉の構造入門-ケイ酸、アルカリ金属に注目-
  5. 米国へ講演旅行にいってきました:Part I
  6. ケージ内で反応を進行させる超分子不斉触媒
  7. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  8. サイエンスアゴラの魅力を聞くー「生活環境化学の部屋」本間先生

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Twitter発!「笑える(?)実験大失敗集」
  2. 科学はわくわくさせてくれるものーロレアル-ユネスコ賞2015 PartII
  3. ピレスロイド系殺虫剤のはなし
  4. 有機合成反応で乳がん手術を改革
  5. プレプリントサーバー:ジャーナルごとの対応差にご注意を【更新版】
  6. 米国へ講演旅行へ行ってきました:Part IV
  7. カセロネス鉱山
  8. クレイグ・ヴェンター J. Craig Venter
  9. 第46回「趣味が高じて化学者に」谷野圭持教授
  10. Greene’s Protective Groups in Organic Synthesis 5th Edition

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP