[スポンサーリンク]

D

デュボア アミノ化反応 Du Bois Amination

[スポンサーリンク]


概要

ロジウム触媒を用いて系中で金属ナイトレノイド(nitrenoid)を生成させ、C-H挿入型アミノ化を行う手法。アルカンの不活性C-Hに窒素官能基を導入できる大変優れた方法。

基本文献

  • Espino, C. G.; Du Bois, J.. Angew. Chem. Int. Ed. 200140, 598. [abstract]
  • Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935.DOI: 10.1021/ja011033x
  • Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew. Chem. Int. Ed. 2004, 43, 4349. doi:10.1002/anie.200460791
  • Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007129, 562. DOI: 10.1021/ja0650450
  • Davies, H. M. L.; Manning, J. R. Nature 2008451, 417. DOI:10.1038/nature06485

 

反応機構

ヨードイミン生成に伴い発生する酢酸が触媒活性を落とすので、塩基としてMgOを共存させる必要がある。
活性種はロジウムナイトレニド。
下記の反応例を見ても分かるが、 Rh二核構造の保持が触媒活性には重要と推測される。(参考: Nakamura, E. et al. J. Am. Chem. Soc. 2002, 124, 7181.) 。
カチオン性を帯びる中間体を経由するため、それを安定化しうる基質(ヘテロ原子隣接位・三級炭素など)のほうが反応しやすい。
du_bois_amine_2.gif

反応例

Du Bois自らによって様々な難関・複雑天然物合成へと応用されている。
Tetrodotoxinの合成[1] du_bois_amine_3.gif
Saxitoxinの合成[2]: アミナールへの立体選択的付加[3]により、連続不斉点を効率的に制御している。
du_bois_amine_5.gif
ロジウムの二核構造を安定化させる配位子(esp)を用いれば、C-Hアミノ化の適用範囲が大幅に拡大される[4]。
du_bois_amine_4.gif
反応の立体特異性を利用したManzacidin類の全合成[5] du_bois_amine_6.gif
(+)-Gonyautoxin 3 の全合成[6]:アミノイミダゾリン合成法[7]を上手く活用している。
du_bois_amine_7.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003125, 11510. DOI: 10.1021/ja0368305

[2] (a) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc. 2006128, 3926. DOI: 10.1021/ja0608545 (b) Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 9964. DOI: 10.1021/ja071501o

[3] (a) Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 2028. DOI: 10.1021/ja028916o (b) Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew. Chem. Int. Ed. 2004, 43, 4349. doi:10.1002/anie.200460791

[4] Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378. DOI: 10.1021/ja0446294

[5] Wehn, P. M.; Du Bois, J. J. Am. Chem. Soc. 2002124, 12950. DOI: 10.1021/ja028139s

[6] Mulcahy, J. V.; Du Bois, J. J. Am. Chem. Soc. 2008130, 12630. doi:10.1021/ja805651g

[7] Kim, M.; Mulcahy, J. V.; Espino, C. G.; Du Bois, J. Org. Lett. 2006, 8, 1073. DOI: 10.1021/ol052920y

 

関連反応

 

関連書籍

[amazonjs asin=”3527306838″ locale=”JP” title=”Modern Rhodium-Catalyzed Organic Reactions”][amazonjs asin=”3527306838″ locale=”JP” title=”Modern Rhodium-Catalyzed Organic Reactions”]

 

外部リンク

関連記事

  1. 福山インドール合成 Fukuyama Indole Synthe…
  2. カルボン酸の保護 Protection of Carboxyli…
  3. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz …
  4. カガン・モランダーカップリング Kagan-Molander C…
  5. ベロウソフ・ジャボチンスキー反応 Belousov-Zhabot…
  6. マーシャル プロパルギル化 Marshall Propargyl…
  7. ロッセン転位 Lossen Rearrangement
  8. ポメランツ・フリッチュ イソキノリン合成 Pomeranz-Fr…

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスにおける分子生成の基礎
  2. 日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成
  3. ラウリマライドの全合成
  4. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  5. 祝!明治日本の産業革命遺産 世界遺産登録
  6. クリック反応に有用なジベンゾアザシクロオクチンの高効率合成法を開発
  7. COVID-19状況下での化学教育について Journal of Chemical Education 特集号
  8. 柴﨑正勝 Masakatsu Shibasaki
  9. MacでChem3Dー新たなる希望ー
  10. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP