[スポンサーリンク]

一般的な話題

ポンコツ博士の海外奮闘録XVI ~博士,再現性を高める②~

[スポンサーリンク]

ポンコツシリーズ

国内編:1話2話3話

国内外伝:1話2話留学TiPs

海外編:1話2話3話4話5話6話7話8話

続きだよ9話10話11話12話13話14話15話

第16話:ポンコツ博士,再現性を高める②

ポンコツ化学者,精製作業を戒める

化学実験において精製作業は苦行であるが,極めて重要な工程である。生物活性評価に重きを置く研究では合成ルートが美しいかよりもそのルートで化合物を精製できて再現性よく純度の高いものができるのか,サンプルの状態(シロップ,粉末等)を常に一定に供給できるのか,が真のエンドポイントになる。したがって,見栄え重視で精製作業を侮る工程が合成ルートに潜在すると後々,躓きやすい(気がする)。

ラボに来て最も衝撃を受けた点は,一部の院生が「最初の小スケールだけPTLCで精製して綺麗なデータをとれたら,最後の方でHPLCかけて綺麗になったらいいや」と思っていたのか,目的物と副生成物がやけにどんかぶりするルート設定をしていたことやその影響でスケールアップ時の手カラム精製が汚かったことである。幸い,チーム内の同僚ポスドクらとはこういったトラブルをフォローしあえたので助かった。

そういえば筆者が若かりし頃「in vitro程度の生物活性が人によってブレるのであれば,生物系研究者が10%,化学系研究者が90%の責任を負うと思え。なぜなら,白い粉からサンプルの真の状態を把握して考えられる人間はその多くが化学者だからだ」や「企業は鬼畜だ。最終精製物を作っても”含水率がちょっと高いですね。水もコンタミなんで分けてください”と言われるから…」と聞かされたことがある。当時は世の中って残酷かつ鬼畜だなぁ…と感じていたが,基礎化学研究から発展させて物事をさらに進めるためには,このような姿勢を常に維持できるか,が重要なのかなぁと最近感じている。

ポンコツ精製マン,新必殺技を披露する

またポエミングが始まって話が逸れそうなので,早速桐山バイオタージの使い方について解説したい。桐山バイオタージに必要なものとしては①桐山ロート②Samplet ③吸引できる受けフラスコである。SampletはBiotageさんのSfarカラムにdry loadingができるオプション品である。つまり,DCMやアセトンなどの揮発しやすい溶媒で溶解した混合物をチャージした後,ダイヤフラムで減圧乾燥や空気 or N2ブローで除媒させることでシリカゲルや珪藻土(セライト)にサンプルを吸着させてチャージできる代物である。山善さんのマシンにもdry loading用のInject columnというものがあるようだ(山善さんのマシンも非常に良いと聞いている)。

一方,dry loadingではサンプルの粘度が高い場合はチャージすることに大変苦労する。実際,筆者のとある混合物はかなりねっとりちゃんなサンプルだったため,Sampletのフィルター部分で見事に止まってしまった(Fig. 1A)。その昔,ゴリ押し陽圧チャージでサンプル層を全て吹き飛ばしたことがある筆者は,吸引ろ過マトのように陰圧チャージできる器具を探していたところ,桐山ロートがSampletとかなり相性が良いことに気がついた。

Fig. 1) 桐山バイオタージによるSampletの吸引チャージ

Biotageさんはもしかして筆者がこの事実に気づくことを予見していた…?と疑心暗鬼に駆られたが,いずれにせよ詰まったサンプルを吸引チャージできて綺麗に単離できた。そして,感謝を込めてこの手法を「桐山バイオタージ」と呼ぶことにした(筆者のTwitterに感動をアップするとBiotageさんに見つかってインタビューを受けた)。本手法は,写真のように桐山ロートよりも小さいサイズでも吸引でき,チャージ中にお漏らししても桐山ロートと下の受け皿を洗い込むことで容易に回収できる。筆者は,汎用性の高い精製テクニックとして筆者の48の殺サンプル技…実験必殺技の1つとして認定した。噂によると本手法は山善さんのInject columnのチャージにおいても効果は抜群のようだ。

ポンコツセコンド,弱点をカバーする

一方,Sampletにも弱点はあって,あまりにもねっとりした化合物はFig. 1Cのようにうまく均一チャージできないので注意してほしい(今回はこれで分かれたのでラッキー)。この問題における筆者の対処法は,Fig. 2のようにチャージ前にDCMやアセトンでフィルターを濡らした後,少し乾かしてからねっとりサンプルをチャージするようにしている。イメージとしてはPTFE製のフィルターで水系溶媒を濾過する感覚である。PTFEフィルターにそのまま水溶液をぶっこむとうまく濾過できず,フィルターの破損や逆流等のリスクがあるため,事前にエタノール等で親水性にしてからフィルターをかけることが定法だが,要はその要領と同じである。

Fig.2) 最初にちょっと湿らすぜチャージ

その他,メーカーは推奨していないだろうが,詰まりやすいフリット部分を開けて中のシリカor珪藻土(セライト)にダイレクトにチャージしたのちガラス棒などで混ぜ混ぜするアイデアもありである(シリカチャージ時の発熱に注意,ヘキサンでちょっと先に湿らすと良い)。また,Biotageさんから空のSampletやSfarカラムの空ボトルが売ってあるので,フリットで詰まりそうなイメージがあれば自分で詰めることをおすすめする。

筆者の場合,10 g用のSampletに30 gのクルードをチャージできたが無理にチャージしたために前処理に時間がかかったことや(Fig. 3),50-100 gのクルードを10 g用Sampletにチャージすることは流石に不可能だったため,最近はFig. 4のような自分でシリカゲルやセライトをまぶして濃縮後,空ボトル(50 g-100 g)をサンプレット代わりに利用してさらに倍!というカラムスタイルを愛用している。一応,実績としてRf =0.1の差しかない60 gの混合物を手詰め60μmシリカ-100 gx2本+20μmシリカ-50 gのスタイルの結果,溶媒量6L30分でほぼ完璧に一回で分けることができた。60 gの混合物を30分で分け切れた事実は,実験現場の人にはなかなか衝撃を与えることができる内容ではなかろうか。筆者の必殺精製技「HUNTER×HUNTERの修行のような寝ながらカラム」をせずに,濃縮中に落ち着いて睡眠を取れるぞ!

Fig. 3) 30 gクルードのせチャージ(の10gをのせた時の写真)+60μm-100g sfarカラム+20μm-50gによる2段構えで緑のゴミを全力で食い止めたシーン。

Fig. 4) クルード60gをセライトにまぶしてチャージ後,黄色い部分(ゴミ)が真ん中の手詰め60μm-100gカラムで見事に食い止められたことで,精製にうるさい筆者を唸らせたワンシーン

ポンコツ・マ?氏,有用性を実感する

ここまでは順相系での有用性を説明をしたが,Sampletは逆相用(中身が逆相シリカor珪藻土)もある。これが本当にめちゃくちゃ良い代物であるので,逆相Sfarを使用する場合は必ず使用することをお勧めする。ガードカラム代わりになって本体内の逆相シリカが汚れにくく再使用回数も増えるし,アセトニトリルにサンプルを溶かしてからチャージ・乾燥後に落ち着いてカラムできる状況は本当にありがたい。Sampletの中身が汚れた場合はナ○ライさんのオープン用逆相シリカとセライトを詰め直せば良いんじゃないかなぁとか考えている(Biotageさんも詰め替え用を売っているのかな?)。

*筆者は本当にBiotageさんの回し者ではなく「良いものは良い」をモットーに現場でヒィヒィ言っている方に快適な実験ライフを送っていただくため,自分で経験した中で良さそうなことを共有したいだけである。その中でも断言する。あれは良いものだ

ポンコツアナログ世代,デジタル化に別れを告げられる

Isoleraの有用性を確認できたところで,周りのラボメンにも有用性がバレてしまい,ラボメンのほとんどが利用することになった。利用頻度が上がったので,Isolera用のSfarカラムや空ボトル,ノーパワーな筆者が200g/350gの蓋を開けるための専用レンチ等を購入し,消耗品を充実させた次の週,Isoleraさんは二度と目覚めることなく,突然筆者らの前から消えてしまった(享年約20歳)。筆者との出会いはわずか半年であった。

結局,筆者は研究において実験のデジタル化を目指しても実験の神様に許されず,運命的にアナログな人間として生きていかなければならないことを悟り,今まで通りこれまで培ってきた実験技術を用いて化合物のgスケール合成に挑むのであった…。

続く

関連リンク・余談

いらすとや :アイキャッチ画像の素材引用元。

化学の素材屋さん:化学系のイラスト探していたので大変ありがたかった。最近,記事の遅筆原因が筆者のグラフィック構成の引き出しが尽きてTOCを作るのが面倒になってきたからとか言えない。

Biotageカラムの基本テクニック:Biotageさんからオフィシャルに精製装置をうまく使うための使用法が公開されている。

新型BiotageマシンのHow toシリーズ: ケムステ中リンク(1が最も古い記事)。

ポンコツTwitter:記事の更新が遅れた分,なかなかクレイジーな実験系やヒャッハーな精製方法をアップしてみた。興味があればフォローしてほしい。

関連商品

[amazonjs asin=”B01BD9DDNM” locale=”JP” title=”柴田科学 HARIO(ハリオ) 三角フラスコ500ml SF-500 SCI”] [amazonjs asin=”B0069IES9G” locale=”JP” title=”駒込ピペット 10ml (ゴム帽付き)ガラス製”]

 

 

 

NANA-Mer.

投稿者の記事一覧

たぶん有機化学が専門の博士。飽きっぽい性格で集中力が続かないので,開き直って「器用貧乏を極めた博士」になることが人生目標。いい歳になってきたのに,今だ大人になれないのが最近の悩み。読み方はナナメルorナナメェ…?

関連記事

  1. 化学英語論文/レポート執筆に役立つPCツール・決定版
  2. 【速報】Mac OS X Lionにアップグレードしてみた
  3. 有機色素の自己集合を利用したナノ粒子の配列
  4. 自己治癒するセラミックス・金属ーその特性と応用|オンライン|
  5. フッ素のチカラで光学分割!?〜配向基はじめました〜
  6. 有機反応を俯瞰する ーエノラートの発生と反応
  7. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活…
  8. ひどい論文を書く技術?

注目情報

ピックアップ記事

  1. 静電相互作用を駆動力とする典型元素触媒
  2. ジャン=ルック・ブレダス Jean-Luc Bredas
  3. フラーレンの単官能基化
  4. 文献検索サイトをもっと便利に:X-MOLをレビュー
  5. ノーベル賞いろいろ
  6. ポンコツ博士の海外奮闘録 〜コロナモラトリアム編〜
  7. 鉄触媒を使い分けて二重結合の位置を自由に動かそう
  8. 創薬化学における「フッ素のダークサイド」
  9. クラレが防湿フィルム開発の米ベンチャー企業と戦略的パートナーシップ
  10. 有機合成化学協会誌2024年6月号:四塩化チタン・選択的フッ素化・環境調和型反応・インデン・インダセン・環状ペプチド

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP