[スポンサーリンク]

化学者のつぶやき

gem-ジフルオロアルケンの新奇合成法

[スポンサーリンク]

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ素を脱離基としたランバーグ・バックランド反応であり、グリニャール試薬が脱プロトン化とC–F結合の活性化の両役割を果たす。

ランバーグ・バックランド反応とgem-ジフルオロアルケン

α-ハロアルキルスルホンに塩基を作用させると、スルホニル基のa位が脱プロトン化を受け、分子内SN2反応によりハロゲンが脱離してエピスルホンとなる。続く二酸化硫黄の放出によりアルケンが生成する。この反応はランバーグ・バックランド反応と呼ばれ、入手が容易なa-ハロアルキルスルホンからのアルケンの合成法であり、天然物や生物活性物質の全合成に用いられてきた(図1A)[1,2]。これまでに、分子内SN2反応の脱離基として塩素や臭素、ヨウ素は報告されているが、フッ素は高い結合解離エネルギーかつ低い脱離能をもち、本反応に適用例はなかった。
一方、gem-ジフルオロアルケンは、容易に他の含フッ素化合物に変換できる他、カルボニルの生物学的等価体として知られており、医薬品化学において注目を浴びている[3]。代表的な合成法として、カルボニル化合物やジアゾ化合物のジフルオロオレフィン化、求核剤を用いたトリフルオロメチルアルケンの付加脱離反応などが挙げられる(図1B)[4]
CF3基を有するスルホンであるトリフロンをランバーグ・バックランド反応に適用できれば、新たなgem-ジフルオロアルケンの合成法となりうる。今回名古屋大学の南保とクイーンズ大学のクラッデンらは、グリニャール試薬を作用させることでトリフロンからgem-ジフルオロアルケンの合成に成功した(図1C)。

図 1. (A) ランバーグ・バックランド反応、(B) gem-ジフルオロアルケンの合成例、(C) 今回の反応

 

“Alkyltriflones in the RambergBäcklund Reaction: An Efficient and Modular Synthesis of gem-Difluoroalkenes”
Maekawa, Y.; Nambo, M.; Yokogawa, D.; Crudden, C. M. J. Am. Chem. Soc. 2020, 142, 15667–15672.
DOI: 10.1021/jacs.0c07924

論文著者の紹介

研究者:Masakazu Nambo (トランスフォーマティブ生命分子研究所HP)
研究者の経歴:
2011 Ph.D., Nagoya University (Prof. Kenichiro Itami)
2011–2013 Asahi Kasei Corporation
2013–2018 Designated Assistant Professor, Institute of Transformative Bio-Molecules in Nagoya University (ITbM)
2018–present Designated Junior Associate Professor, ITbM
研究内容:パラジウム触媒を用いたトリアリールメタン類の効率的合成法の開発、植物の細胞分裂を急速に止める新規化合物の発見

研究者:Cathleen M. Crudden (研究室HP)
研究者の経歴:
1994 Ph.D., NSERC Postgraduate scholar, University of Ottawa, Canada (Prof. Howard Alper)
1995-1996 NSERC Postdoctoral Fellow, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
1996-2000 Assistant Professor, University of New Brunswick, Canada
2000 Associate Professor, University of New Brunswick, Canada
2001–2002 University Research Professor, University of New Brunswick, Canada
2002–2009 Associate Professor, Queen’s University, Canada
2009–present Professor, Queen’s University, Canada
2013–present Principal Investigator, ITbM
研究内容:有機ホウ素化合物を用いた不斉触媒反応、キラルメソポーラス材料の開発、N-ヘテロ環状カルベン錯体による触媒反応、NHC配位子を用いた自己組織化単分子層の開発

論文の概要

筆者らはまず、二級アルキルトリフロン1aを用いて塩基を検討した(図2A)。その結果、グリニャール試薬を用いると反応が進行し、望みの2aが得られることを見いだし、CyMgBrが最も良い結果を与えた。一方で、ランバーグ・バックランド反応において一般的に用いられるリチウム試薬やジエチル亜鉛を用いると反応はほとんど進行しなかった。しかし、リチウム試薬にMgI2を添加すると2aが中程度の収率で得られた。以上の結果から、本反応ではマグネシウムカチオンが塩基としてのみならず、ルイス酸としてC–F結合を活性化しSN2反応を促進させていることが示唆された。
反応経路のエネルギーを計算したところ、生じたマグネシウムカチオンは脱プロトン化を受けた基質の炭素部位(TS-1)ではなく、酸素部位と相互作用した遷移状態TS-2を経由することが明らかになった(図2B、詳しくは論文を参照)。また、MeLiを塩基として用いた場合、有機マグネシウム試薬と比較し活性化エネルギーが高くなった。このことは、リチウム試薬では反応が進行しない実験結果と一致し、本反応におけるマグネシウムカチオンの重要性が示唆された。

次に基質適用範囲を調査した(図2C)。アセタール(1b)やシリル基(1c)、アミノ基(1d)をもつ基質を用いても中程度から高収率で対応する2を与えた。また、ベンジルトリフロン(1e)を用いても反応は進行する。さらに、ペルフルオロアルキルスルホン(1f)にも適用することもでき、従来の手法では合成できなかったポリフルオロアルケン2fを高収率で与えた。

図 2. (A) 反応条件の検討、(B) 遷移状態、(C) 基質適用範囲

 

以上、ランバーグ・バックランド反応による新奇gem-ジフルオロアルケンの合成法が開発された。容易に入手可能なトリフロンを用いる本手法は、含フッ素化合物の迅速な合成において有用な手法となることが期待される。

参考文献

  1. Taylor, R. J. K. Recent Developments in Ramberg–Bäcklund and Episulfone Chemistry. Chem. Commun. 1999, 217–227. DOI: 10.1039/A806615I
  2. (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem., Int. Ed. 2007, 46, 8186–8191. DOI: 10.1002/anie.200703333 (b) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc. 2009, 131, 1753–1765. DOI: 10.1021/ja806183r (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B
  3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693
  4. (a) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev. 2012, 112, 1344–1462. DOI: 10.1021/cr200165q(b) Zhang, X.; Cao, S. Recent Advances in the Synthesis and C–F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. DOI:10.1016/j.tetlet.2016.12.054 (c) Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. J. Am. Chem. Soc. 2015, 137, 14496–14501. DOI: 10.1021/jacs.5b09888
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SciFinder Future Leaders in Chem…
  2. アメリカ大学院留学:研究者キャリアとライフイベント
  3. 「坂田薫の『SCIENCE NEWS』」に出演します!
  4. Bayer Material Scienceの分離独立が語るもの…
  5. (+)-マンザミンAの全合成
  6. 若手化学者に朗報!YMC研究奨励金に応募しよう!
  7. 鉄触媒反応へのお誘い ~クロスカップリング反応を中心に~
  8. トリチウム水から完全無害な水素ガスを作り出す?

注目情報

ピックアップ記事

  1. サブフタロシアニン SubPhthalocyanine
  2. ウーロン茶の中でも医薬品の化学合成が可能に
  3. 亜酸化窒素 Nitrous oxide
  4. 【書評】スキルアップ有機化学 しっかり身につく基礎の基礎
  5. チャン転位(Chan Rearrangement)
  6. 【医薬分野のみなさま向けウェブセミナー】マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開
  7. 酸化グラフェンの光による酸素除去メカニズムを解明 ―答えに辿り着くまでの6年間―
  8. 社会人7年目、先端技術に携わる若き研究者の転職を、 ビジョンマッチングはどう成功に導いたのか。
  9. 1と2の中間のハナシ
  10. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP