[スポンサーリンク]

化学者のつぶやき

gem-ジフルオロアルケンの新奇合成法

[スポンサーリンク]

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ素を脱離基としたランバーグ・バックランド反応であり、グリニャール試薬が脱プロトン化とC–F結合の活性化の両役割を果たす。

ランバーグ・バックランド反応とgem-ジフルオロアルケン

α-ハロアルキルスルホンに塩基を作用させると、スルホニル基のa位が脱プロトン化を受け、分子内SN2反応によりハロゲンが脱離してエピスルホンとなる。続く二酸化硫黄の放出によりアルケンが生成する。この反応はランバーグ・バックランド反応と呼ばれ、入手が容易なa-ハロアルキルスルホンからのアルケンの合成法であり、天然物や生物活性物質の全合成に用いられてきた(図1A)[1,2]。これまでに、分子内SN2反応の脱離基として塩素や臭素、ヨウ素は報告されているが、フッ素は高い結合解離エネルギーかつ低い脱離能をもち、本反応に適用例はなかった。
一方、gem-ジフルオロアルケンは、容易に他の含フッ素化合物に変換できる他、カルボニルの生物学的等価体として知られており、医薬品化学において注目を浴びている[3]。代表的な合成法として、カルボニル化合物やジアゾ化合物のジフルオロオレフィン化、求核剤を用いたトリフルオロメチルアルケンの付加脱離反応などが挙げられる(図1B)[4]
CF3基を有するスルホンであるトリフロンをランバーグ・バックランド反応に適用できれば、新たなgem-ジフルオロアルケンの合成法となりうる。今回名古屋大学の南保とクイーンズ大学のクラッデンらは、グリニャール試薬を作用させることでトリフロンからgem-ジフルオロアルケンの合成に成功した(図1C)。

図 1. (A) ランバーグ・バックランド反応、(B) gem-ジフルオロアルケンの合成例、(C) 今回の反応

 

“Alkyltriflones in the RambergBäcklund Reaction: An Efficient and Modular Synthesis of gem-Difluoroalkenes”
Maekawa, Y.; Nambo, M.; Yokogawa, D.; Crudden, C. M. J. Am. Chem. Soc. 2020, 142, 15667–15672.
DOI: 10.1021/jacs.0c07924

論文著者の紹介

研究者:Masakazu Nambo (トランスフォーマティブ生命分子研究所HP)
研究者の経歴:
2011 Ph.D., Nagoya University (Prof. Kenichiro Itami)
2011–2013 Asahi Kasei Corporation
2013–2018 Designated Assistant Professor, Institute of Transformative Bio-Molecules in Nagoya University (ITbM)
2018–present Designated Junior Associate Professor, ITbM
研究内容:パラジウム触媒を用いたトリアリールメタン類の効率的合成法の開発、植物の細胞分裂を急速に止める新規化合物の発見

研究者:Cathleen M. Crudden (研究室HP)
研究者の経歴:
1994 Ph.D., NSERC Postgraduate scholar, University of Ottawa, Canada (Prof. Howard Alper)
1995-1996 NSERC Postdoctoral Fellow, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
1996-2000 Assistant Professor, University of New Brunswick, Canada
2000 Associate Professor, University of New Brunswick, Canada
2001–2002 University Research Professor, University of New Brunswick, Canada
2002–2009 Associate Professor, Queen’s University, Canada
2009–present Professor, Queen’s University, Canada
2013–present Principal Investigator, ITbM
研究内容:有機ホウ素化合物を用いた不斉触媒反応、キラルメソポーラス材料の開発、N-ヘテロ環状カルベン錯体による触媒反応、NHC配位子を用いた自己組織化単分子層の開発

論文の概要

筆者らはまず、二級アルキルトリフロン1aを用いて塩基を検討した(図2A)。その結果、グリニャール試薬を用いると反応が進行し、望みの2aが得られることを見いだし、CyMgBrが最も良い結果を与えた。一方で、ランバーグ・バックランド反応において一般的に用いられるリチウム試薬やジエチル亜鉛を用いると反応はほとんど進行しなかった。しかし、リチウム試薬にMgI2を添加すると2aが中程度の収率で得られた。以上の結果から、本反応ではマグネシウムカチオンが塩基としてのみならず、ルイス酸としてC–F結合を活性化しSN2反応を促進させていることが示唆された。
反応経路のエネルギーを計算したところ、生じたマグネシウムカチオンは脱プロトン化を受けた基質の炭素部位(TS-1)ではなく、酸素部位と相互作用した遷移状態TS-2を経由することが明らかになった(図2B、詳しくは論文を参照)。また、MeLiを塩基として用いた場合、有機マグネシウム試薬と比較し活性化エネルギーが高くなった。このことは、リチウム試薬では反応が進行しない実験結果と一致し、本反応におけるマグネシウムカチオンの重要性が示唆された。

次に基質適用範囲を調査した(図2C)。アセタール(1b)やシリル基(1c)、アミノ基(1d)をもつ基質を用いても中程度から高収率で対応する2を与えた。また、ベンジルトリフロン(1e)を用いても反応は進行する。さらに、ペルフルオロアルキルスルホン(1f)にも適用することもでき、従来の手法では合成できなかったポリフルオロアルケン2fを高収率で与えた。

図 2. (A) 反応条件の検討、(B) 遷移状態、(C) 基質適用範囲

 

以上、ランバーグ・バックランド反応による新奇gem-ジフルオロアルケンの合成法が開発された。容易に入手可能なトリフロンを用いる本手法は、含フッ素化合物の迅速な合成において有用な手法となることが期待される。

参考文献

  1. Taylor, R. J. K. Recent Developments in Ramberg–Bäcklund and Episulfone Chemistry. Chem. Commun. 1999, 217–227. DOI: 10.1039/A806615I
  2. (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem., Int. Ed. 2007, 46, 8186–8191. DOI: 10.1002/anie.200703333 (b) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc. 2009, 131, 1753–1765. DOI: 10.1021/ja806183r (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B
  3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693
  4. (a) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev. 2012, 112, 1344–1462. DOI: 10.1021/cr200165q(b) Zhang, X.; Cao, S. Recent Advances in the Synthesis and C–F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. DOI:10.1016/j.tetlet.2016.12.054 (c) Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. J. Am. Chem. Soc. 2015, 137, 14496–14501. DOI: 10.1021/jacs.5b09888

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜
  2. 酸化グラフェンの光による酸素除去メカニズムを解明 ―答えに辿り着…
  3. 元素の和名わかりますか?
  4. ピリジン同士のラジカル-ラジカルカップリング
  5. アルカリ土類金属触媒の最前線
  6. 学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシン…
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑨:トラックボ…
  8. 第2回慶應有機合成化学若手シンポジウム

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Pixiv発!秀作化学イラスト集【Part 2】
  2. 二酸化炭素の工業用有機材料への利用とその作製技術
  3. 塩にまつわるよもやま話
  4. 「サガミオリジナル001」、今月から販売再開 相模ゴム
  5. 元素のふるさと図鑑
  6. 宮田完ニ郎 Miyata Kanjiro
  7. 化学者の単語登録テクニック
  8. 細胞の中を旅する小分子|第一回
  9. マンガでわかる かずのすけ式美肌化学のルール
  10. 総合化学大手5社の前期、4社が経常減益

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

化学産業のサプライチェーンをサポートする新しい動き

長瀬産業株式会社、ナガセ情報開発株式会社は、2023年2月1日より、化学品ドキュメントの配付管理ツー…

シクロデキストリンの「穴の中」で光るセンサー

第468回のスポットライトリサーチは、上智大学理工学部 物質生命理工学科 分析化学研究グループ(早下…

Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-

 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受け、従来の経験と勘によ…

超原子価ヨウ素反応剤を用いたジアミド類の4-イミダゾリジノン誘導化

第468回のスポットライトリサーチは、岐阜薬科大学  合成薬品製造学研究室(伊藤研究室)に所属されて…

研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

先日のBiotage Selekt + ELSDの記事でちらっと紹介した、ELS…

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」を開催します!

修論・卒論・博士論文で大忙しの2,3月ですが、皆さんいかがお過ごしでしょうか。まとめ作業とデスク…

有機合成化学協会誌2023年1月号:[1,3]-アルコキシ転位・クロロシラン・インシリコ技術・マイトトキシン・MOF

有機合成化学協会が発行する有機合成化学協会誌、2023年1月号がオンライン公開されました。す…

飲む痔の薬のはなし1 ブロメラインとビタミンE

Tshozoです。あれ(発端記事・その後の記事)からいろいろありました。一進一退とはいえ、咀…

深紫外光源の効率を高める新たな透明電極材料

第467回のスポットライトリサーチは、東京都立大学大学院 理学研究科 廣瀬研究室の長島 陽(ながしま…

化学メーカー発の半導体技術が受賞

積水化学工業株式会社の高機能プラスチックスカンパニー開発研究所エレクトロニクス材料開発センターが開発…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP