[スポンサーリンク]

化学者のつぶやき

gem-ジフルオロアルケンの新奇合成法

[スポンサーリンク]

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ素を脱離基としたランバーグ・バックランド反応であり、グリニャール試薬が脱プロトン化とC–F結合の活性化の両役割を果たす。

ランバーグ・バックランド反応とgem-ジフルオロアルケン

α-ハロアルキルスルホンに塩基を作用させると、スルホニル基のa位が脱プロトン化を受け、分子内SN2反応によりハロゲンが脱離してエピスルホンとなる。続く二酸化硫黄の放出によりアルケンが生成する。この反応はランバーグ・バックランド反応と呼ばれ、入手が容易なa-ハロアルキルスルホンからのアルケンの合成法であり、天然物や生物活性物質の全合成に用いられてきた(図1A)[1,2]。これまでに、分子内SN2反応の脱離基として塩素や臭素、ヨウ素は報告されているが、フッ素は高い結合解離エネルギーかつ低い脱離能をもち、本反応に適用例はなかった。
一方、gem-ジフルオロアルケンは、容易に他の含フッ素化合物に変換できる他、カルボニルの生物学的等価体として知られており、医薬品化学において注目を浴びている[3]。代表的な合成法として、カルボニル化合物やジアゾ化合物のジフルオロオレフィン化、求核剤を用いたトリフルオロメチルアルケンの付加脱離反応などが挙げられる(図1B)[4]
CF3基を有するスルホンであるトリフロンをランバーグ・バックランド反応に適用できれば、新たなgem-ジフルオロアルケンの合成法となりうる。今回名古屋大学の南保とクイーンズ大学のクラッデンらは、グリニャール試薬を作用させることでトリフロンからgem-ジフルオロアルケンの合成に成功した(図1C)。

図 1. (A) ランバーグ・バックランド反応、(B) gem-ジフルオロアルケンの合成例、(C) 今回の反応

 

“Alkyltriflones in the RambergBäcklund Reaction: An Efficient and Modular Synthesis of gem-Difluoroalkenes”
Maekawa, Y.; Nambo, M.; Yokogawa, D.; Crudden, C. M. J. Am. Chem. Soc. 2020, 142, 15667–15672.
DOI: 10.1021/jacs.0c07924

論文著者の紹介

研究者:Masakazu Nambo (トランスフォーマティブ生命分子研究所HP)
研究者の経歴:
2011 Ph.D., Nagoya University (Prof. Kenichiro Itami)
2011–2013 Asahi Kasei Corporation
2013–2018 Designated Assistant Professor, Institute of Transformative Bio-Molecules in Nagoya University (ITbM)
2018–present Designated Junior Associate Professor, ITbM
研究内容:パラジウム触媒を用いたトリアリールメタン類の効率的合成法の開発、植物の細胞分裂を急速に止める新規化合物の発見

研究者:Cathleen M. Crudden (研究室HP)
研究者の経歴:
1994 Ph.D., NSERC Postgraduate scholar, University of Ottawa, Canada (Prof. Howard Alper)
1995-1996 NSERC Postdoctoral Fellow, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
1996-2000 Assistant Professor, University of New Brunswick, Canada
2000 Associate Professor, University of New Brunswick, Canada
2001–2002 University Research Professor, University of New Brunswick, Canada
2002–2009 Associate Professor, Queen’s University, Canada
2009–present Professor, Queen’s University, Canada
2013–present Principal Investigator, ITbM
研究内容:有機ホウ素化合物を用いた不斉触媒反応、キラルメソポーラス材料の開発、N-ヘテロ環状カルベン錯体による触媒反応、NHC配位子を用いた自己組織化単分子層の開発

論文の概要

筆者らはまず、二級アルキルトリフロン1aを用いて塩基を検討した(図2A)。その結果、グリニャール試薬を用いると反応が進行し、望みの2aが得られることを見いだし、CyMgBrが最も良い結果を与えた。一方で、ランバーグ・バックランド反応において一般的に用いられるリチウム試薬やジエチル亜鉛を用いると反応はほとんど進行しなかった。しかし、リチウム試薬にMgI2を添加すると2aが中程度の収率で得られた。以上の結果から、本反応ではマグネシウムカチオンが塩基としてのみならず、ルイス酸としてC–F結合を活性化しSN2反応を促進させていることが示唆された。
反応経路のエネルギーを計算したところ、生じたマグネシウムカチオンは脱プロトン化を受けた基質の炭素部位(TS-1)ではなく、酸素部位と相互作用した遷移状態TS-2を経由することが明らかになった(図2B、詳しくは論文を参照)。また、MeLiを塩基として用いた場合、有機マグネシウム試薬と比較し活性化エネルギーが高くなった。このことは、リチウム試薬では反応が進行しない実験結果と一致し、本反応におけるマグネシウムカチオンの重要性が示唆された。

次に基質適用範囲を調査した(図2C)。アセタール(1b)やシリル基(1c)、アミノ基(1d)をもつ基質を用いても中程度から高収率で対応する2を与えた。また、ベンジルトリフロン(1e)を用いても反応は進行する。さらに、ペルフルオロアルキルスルホン(1f)にも適用することもでき、従来の手法では合成できなかったポリフルオロアルケン2fを高収率で与えた。

図 2. (A) 反応条件の検討、(B) 遷移状態、(C) 基質適用範囲

 

以上、ランバーグ・バックランド反応による新奇gem-ジフルオロアルケンの合成法が開発された。容易に入手可能なトリフロンを用いる本手法は、含フッ素化合物の迅速な合成において有用な手法となることが期待される。

参考文献

  1. Taylor, R. J. K. Recent Developments in Ramberg–Bäcklund and Episulfone Chemistry. Chem. Commun. 1999, 217–227. DOI: 10.1039/A806615I
  2. (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem., Int. Ed. 2007, 46, 8186–8191. DOI: 10.1002/anie.200703333 (b) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc. 2009, 131, 1753–1765. DOI: 10.1021/ja806183r (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B
  3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693
  4. (a) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev. 2012, 112, 1344–1462. DOI: 10.1021/cr200165q(b) Zhang, X.; Cao, S. Recent Advances in the Synthesis and C–F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. DOI:10.1016/j.tetlet.2016.12.054 (c) Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. J. Am. Chem. Soc. 2015, 137, 14496–14501. DOI: 10.1021/jacs.5b09888
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 工程フローからみた「どんな会社が?」~半導体関連
  2. 反応の選択性を制御する新手法
  3. ペプチドの革新的合成
  4. 鬼は大学のどこにいるの?
  5. とある水銀化合物のはなし チメロサールとは
  6. 高速エバポレーションシステムを使ってみた:バイオタージ「V-10…
  7. 世界初の気体可塑性エラストマー!!
  8. クロスカップリング反応にかけた夢:化学者たちの発見物語

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. タンパクの骨格を改変する、新たなスプライシング機構の発見
  2. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part I
  3. 化学の歴史
  4. Kindle Paperwhiteで自炊教科書を読んでみた
  5. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  6. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  7. アンリ・カガン Henri B. Kagan
  8. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  9. メントール /menthol
  10. 印象に残った天然物合成1

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

【第11回Vシンポ特別企画】講師紹介③:大内 誠 先生

今回の記事では、第11回バーチャルシンポジウム「最先端精密高分子合成」をより楽しむべく講師の一人であ…

第131回―「Nature出版社のテクニカルエディターとして」Laura Croft博士

第131回の海外化学者インタビューはローラ・クロフト博士です。Nature Chemistry誌とN…

【書籍】機器分析ハンドブック2 高分子・分離分析編

2020/10/20に刊行されたばかりのホットな書籍をご紹介します。概要はじめて機器…

アメリカ大学院留学:卒業後の進路とインダストリー就活(1)

PhD留学について、受験や大学院生活についての情報は豊富に手に入るようになってきていますが、卒業後の…

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

概要ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として…

その構造、使って大丈夫ですか? 〜創薬におけるアブナいヤツら〜

新参スタッフの DAICHAN です。前回の記事「その化合物、信じて大丈夫ですか…

Chem-Station Twitter

PAGE TOP