[スポンサーリンク]

化学者のつぶやき

gem-ジフルオロアルケンの新奇合成法

[スポンサーリンク]

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ素を脱離基としたランバーグ・バックランド反応であり、グリニャール試薬が脱プロトン化とC–F結合の活性化の両役割を果たす。

ランバーグ・バックランド反応とgem-ジフルオロアルケン

α-ハロアルキルスルホンに塩基を作用させると、スルホニル基のa位が脱プロトン化を受け、分子内SN2反応によりハロゲンが脱離してエピスルホンとなる。続く二酸化硫黄の放出によりアルケンが生成する。この反応はランバーグ・バックランド反応と呼ばれ、入手が容易なa-ハロアルキルスルホンからのアルケンの合成法であり、天然物や生物活性物質の全合成に用いられてきた(図1A)[1,2]。これまでに、分子内SN2反応の脱離基として塩素や臭素、ヨウ素は報告されているが、フッ素は高い結合解離エネルギーかつ低い脱離能をもち、本反応に適用例はなかった。
一方、gem-ジフルオロアルケンは、容易に他の含フッ素化合物に変換できる他、カルボニルの生物学的等価体として知られており、医薬品化学において注目を浴びている[3]。代表的な合成法として、カルボニル化合物やジアゾ化合物のジフルオロオレフィン化、求核剤を用いたトリフルオロメチルアルケンの付加脱離反応などが挙げられる(図1B)[4]
CF3基を有するスルホンであるトリフロンをランバーグ・バックランド反応に適用できれば、新たなgem-ジフルオロアルケンの合成法となりうる。今回名古屋大学の南保とクイーンズ大学のクラッデンらは、グリニャール試薬を作用させることでトリフロンからgem-ジフルオロアルケンの合成に成功した(図1C)。

図 1. (A) ランバーグ・バックランド反応、(B) gem-ジフルオロアルケンの合成例、(C) 今回の反応

 

“Alkyltriflones in the RambergBäcklund Reaction: An Efficient and Modular Synthesis of gem-Difluoroalkenes”
Maekawa, Y.; Nambo, M.; Yokogawa, D.; Crudden, C. M. J. Am. Chem. Soc. 2020, 142, 15667–15672.
DOI: 10.1021/jacs.0c07924

論文著者の紹介

研究者:Masakazu Nambo (トランスフォーマティブ生命分子研究所HP)
研究者の経歴:
2011 Ph.D., Nagoya University (Prof. Kenichiro Itami)
2011–2013 Asahi Kasei Corporation
2013–2018 Designated Assistant Professor, Institute of Transformative Bio-Molecules in Nagoya University (ITbM)
2018–present Designated Junior Associate Professor, ITbM
研究内容:パラジウム触媒を用いたトリアリールメタン類の効率的合成法の開発、植物の細胞分裂を急速に止める新規化合物の発見

研究者:Cathleen M. Crudden (研究室HP)
研究者の経歴:
1994 Ph.D., NSERC Postgraduate scholar, University of Ottawa, Canada (Prof. Howard Alper)
1995-1996 NSERC Postdoctoral Fellow, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
1996-2000 Assistant Professor, University of New Brunswick, Canada
2000 Associate Professor, University of New Brunswick, Canada
2001–2002 University Research Professor, University of New Brunswick, Canada
2002–2009 Associate Professor, Queen’s University, Canada
2009–present Professor, Queen’s University, Canada
2013–present Principal Investigator, ITbM
研究内容:有機ホウ素化合物を用いた不斉触媒反応、キラルメソポーラス材料の開発、N-ヘテロ環状カルベン錯体による触媒反応、NHC配位子を用いた自己組織化単分子層の開発

論文の概要

筆者らはまず、二級アルキルトリフロン1aを用いて塩基を検討した(図2A)。その結果、グリニャール試薬を用いると反応が進行し、望みの2aが得られることを見いだし、CyMgBrが最も良い結果を与えた。一方で、ランバーグ・バックランド反応において一般的に用いられるリチウム試薬やジエチル亜鉛を用いると反応はほとんど進行しなかった。しかし、リチウム試薬にMgI2を添加すると2aが中程度の収率で得られた。以上の結果から、本反応ではマグネシウムカチオンが塩基としてのみならず、ルイス酸としてC–F結合を活性化しSN2反応を促進させていることが示唆された。
反応経路のエネルギーを計算したところ、生じたマグネシウムカチオンは脱プロトン化を受けた基質の炭素部位(TS-1)ではなく、酸素部位と相互作用した遷移状態TS-2を経由することが明らかになった(図2B、詳しくは論文を参照)。また、MeLiを塩基として用いた場合、有機マグネシウム試薬と比較し活性化エネルギーが高くなった。このことは、リチウム試薬では反応が進行しない実験結果と一致し、本反応におけるマグネシウムカチオンの重要性が示唆された。

次に基質適用範囲を調査した(図2C)。アセタール(1b)やシリル基(1c)、アミノ基(1d)をもつ基質を用いても中程度から高収率で対応する2を与えた。また、ベンジルトリフロン(1e)を用いても反応は進行する。さらに、ペルフルオロアルキルスルホン(1f)にも適用することもでき、従来の手法では合成できなかったポリフルオロアルケン2fを高収率で与えた。

図 2. (A) 反応条件の検討、(B) 遷移状態、(C) 基質適用範囲

 

以上、ランバーグ・バックランド反応による新奇gem-ジフルオロアルケンの合成法が開発された。容易に入手可能なトリフロンを用いる本手法は、含フッ素化合物の迅速な合成において有用な手法となることが期待される。

参考文献

  1. Taylor, R. J. K. Recent Developments in Ramberg–Bäcklund and Episulfone Chemistry. Chem. Commun. 1999, 217–227. DOI: 10.1039/A806615I
  2. (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem., Int. Ed. 2007, 46, 8186–8191. DOI: 10.1002/anie.200703333 (b) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc. 2009, 131, 1753–1765. DOI: 10.1021/ja806183r (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B
  3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693
  4. (a) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev. 2012, 112, 1344–1462. DOI: 10.1021/cr200165q(b) Zhang, X.; Cao, S. Recent Advances in the Synthesis and C–F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. DOI:10.1016/j.tetlet.2016.12.054 (c) Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. J. Am. Chem. Soc. 2015, 137, 14496–14501. DOI: 10.1021/jacs.5b09888

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 創発型研究のススメー日本化学会「化学と工業:論説」より
  2. ククルビットウリルのロタキサン形成でClick反応を加速する
  3. 遺伝子工学ーゲノム編集と最新技術ーChemical Times特…
  4. 【書籍】化学探偵Mr.キュリー2
  5. システインの位置選択的修飾を実現する「π-クランプ法」
  6. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化
  7. ポケットにいれて持ち運べる高分子型水素キャリアの開発
  8. 中小企業・創薬ベンチャー必見!最新研究機器シェアリングシステム

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 私がなぜケムステスタッフになったのか?
  2. マーティンスルフラン Martin’s Sulfurane
  3. 耐薬品性デジタルマノメーター:バキューブランド VACUU・VIEW
  4. ボイヤー・シュミット・オーブ転位 Boyer-Schmidt-Aube Rearrangement
  5. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体模倣反応・色素・開殻π造形
  6. C&EN コラム記事 ~Bench & Cubicle~
  7. 鉄錯体による触媒的窒素固定のおはなし-1
  8. 進撃のタイプウェル
  9. ポンコツ博士の海外奮闘録④ ~博士,ろ過マトる~
  10. COVID-19状況下での化学教育について Journal of Chemical Education 特集号

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP