[スポンサーリンク]

化学者のつぶやき

gem-ジフルオロアルケンの新奇合成法

[スポンサーリンク]

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ素を脱離基としたランバーグ・バックランド反応であり、グリニャール試薬が脱プロトン化とC–F結合の活性化の両役割を果たす。

ランバーグ・バックランド反応とgem-ジフルオロアルケン

α-ハロアルキルスルホンに塩基を作用させると、スルホニル基のa位が脱プロトン化を受け、分子内SN2反応によりハロゲンが脱離してエピスルホンとなる。続く二酸化硫黄の放出によりアルケンが生成する。この反応はランバーグ・バックランド反応と呼ばれ、入手が容易なa-ハロアルキルスルホンからのアルケンの合成法であり、天然物や生物活性物質の全合成に用いられてきた(図1A)[1,2]。これまでに、分子内SN2反応の脱離基として塩素や臭素、ヨウ素は報告されているが、フッ素は高い結合解離エネルギーかつ低い脱離能をもち、本反応に適用例はなかった。
一方、gem-ジフルオロアルケンは、容易に他の含フッ素化合物に変換できる他、カルボニルの生物学的等価体として知られており、医薬品化学において注目を浴びている[3]。代表的な合成法として、カルボニル化合物やジアゾ化合物のジフルオロオレフィン化、求核剤を用いたトリフルオロメチルアルケンの付加脱離反応などが挙げられる(図1B)[4]
CF3基を有するスルホンであるトリフロンをランバーグ・バックランド反応に適用できれば、新たなgem-ジフルオロアルケンの合成法となりうる。今回名古屋大学の南保とクイーンズ大学のクラッデンらは、グリニャール試薬を作用させることでトリフロンからgem-ジフルオロアルケンの合成に成功した(図1C)。

図 1. (A) ランバーグ・バックランド反応、(B) gem-ジフルオロアルケンの合成例、(C) 今回の反応

 

“Alkyltriflones in the RambergBäcklund Reaction: An Efficient and Modular Synthesis of gem-Difluoroalkenes”
Maekawa, Y.; Nambo, M.; Yokogawa, D.; Crudden, C. M. J. Am. Chem. Soc. 2020, 142, 15667–15672.
DOI: 10.1021/jacs.0c07924

論文著者の紹介

研究者:Masakazu Nambo (トランスフォーマティブ生命分子研究所HP)
研究者の経歴:
2011 Ph.D., Nagoya University (Prof. Kenichiro Itami)
2011–2013 Asahi Kasei Corporation
2013–2018 Designated Assistant Professor, Institute of Transformative Bio-Molecules in Nagoya University (ITbM)
2018–present Designated Junior Associate Professor, ITbM
研究内容:パラジウム触媒を用いたトリアリールメタン類の効率的合成法の開発、植物の細胞分裂を急速に止める新規化合物の発見

研究者:Cathleen M. Crudden (研究室HP)
研究者の経歴:
1994 Ph.D., NSERC Postgraduate scholar, University of Ottawa, Canada (Prof. Howard Alper)
1995-1996 NSERC Postdoctoral Fellow, University of Illinois at Urbana-Champaign, USA (Prof. Scott E. Denmark)
1996-2000 Assistant Professor, University of New Brunswick, Canada
2000 Associate Professor, University of New Brunswick, Canada
2001–2002 University Research Professor, University of New Brunswick, Canada
2002–2009 Associate Professor, Queen’s University, Canada
2009–present Professor, Queen’s University, Canada
2013–present Principal Investigator, ITbM
研究内容:有機ホウ素化合物を用いた不斉触媒反応、キラルメソポーラス材料の開発、N-ヘテロ環状カルベン錯体による触媒反応、NHC配位子を用いた自己組織化単分子層の開発

論文の概要

筆者らはまず、二級アルキルトリフロン1aを用いて塩基を検討した(図2A)。その結果、グリニャール試薬を用いると反応が進行し、望みの2aが得られることを見いだし、CyMgBrが最も良い結果を与えた。一方で、ランバーグ・バックランド反応において一般的に用いられるリチウム試薬やジエチル亜鉛を用いると反応はほとんど進行しなかった。しかし、リチウム試薬にMgI2を添加すると2aが中程度の収率で得られた。以上の結果から、本反応ではマグネシウムカチオンが塩基としてのみならず、ルイス酸としてC–F結合を活性化しSN2反応を促進させていることが示唆された。
反応経路のエネルギーを計算したところ、生じたマグネシウムカチオンは脱プロトン化を受けた基質の炭素部位(TS-1)ではなく、酸素部位と相互作用した遷移状態TS-2を経由することが明らかになった(図2B、詳しくは論文を参照)。また、MeLiを塩基として用いた場合、有機マグネシウム試薬と比較し活性化エネルギーが高くなった。このことは、リチウム試薬では反応が進行しない実験結果と一致し、本反応におけるマグネシウムカチオンの重要性が示唆された。

次に基質適用範囲を調査した(図2C)。アセタール(1b)やシリル基(1c)、アミノ基(1d)をもつ基質を用いても中程度から高収率で対応する2を与えた。また、ベンジルトリフロン(1e)を用いても反応は進行する。さらに、ペルフルオロアルキルスルホン(1f)にも適用することもでき、従来の手法では合成できなかったポリフルオロアルケン2fを高収率で与えた。

図 2. (A) 反応条件の検討、(B) 遷移状態、(C) 基質適用範囲

 

以上、ランバーグ・バックランド反応による新奇gem-ジフルオロアルケンの合成法が開発された。容易に入手可能なトリフロンを用いる本手法は、含フッ素化合物の迅速な合成において有用な手法となることが期待される。

参考文献

  1. Taylor, R. J. K. Recent Developments in Ramberg–Bäcklund and Episulfone Chemistry. Chem. Commun. 1999, 217–227. DOI: 10.1039/A806615I
  2. (a) Snyder, S. A.; Zografos, A. L.; Lin, Y. Total Synthesis of Resveratrol-Based Natural Products: A Chemoselective Solution. Angew. Chem., Int. Ed. 2007, 46, 8186–8191. DOI: 10.1002/anie.200703333 (b) Snyder, S. A.; Breazzano, S. P.; Ross, A. G.; Lin, Y.; Zografos, A. L. Total Synthesis of Diverse Carbogenic Complexity within the Resveratrol Class from a Common Building Block. J. Am. Chem. Soc. 2009, 131, 1753–1765. DOI: 10.1021/ja806183r (c) Zhang, X.-M.; Tu, Y.-Q.; Zhang, F.-M.; Chen, Z.-H.; Wang, S.-H. Recent Applications of the 1,2-Carbon Atom Migration Strategy in Complex Natural Product Total Synthesis. Chem. Soc. Rev. 2017, 46, 2272–2305. DOI: 10.1039/C6CS00935B
  3. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591. DOI: 10.1021/jm1013693
  4. (a) Chelucci, G. Synthesis and Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev. 2012, 112, 1344–1462. DOI: 10.1021/cr200165q(b) Zhang, X.; Cao, S. Recent Advances in the Synthesis and C–F Functionalization of gem-Difluoroalkenes. Tetrahedron Lett. 2017, 58, 375–392. DOI:10.1016/j.tetlet.2016.12.054 (c) Hu, M. Y.; Ni, C. F.; Li, L. C.; Han, Y. X.; Hu, J. B. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors. J. Am. Chem. Soc. 2015, 137, 14496–14501. DOI: 10.1021/jacs.5b09888
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学系必見!お土産・グッズ・アイテム特集
  2. 光で2-AGの量を制御する
  3. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実…
  4. Reaxys体験レポート反応検索編
  5. 科学予算はイギリスでも「仕分け対象」
  6. 小さなフッ素をどうつまむのか
  7. Reaxys Prize 2017ファイナリスト発表
  8. 『Ph.D.』の起源をちょっと調べてみました① 概要編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 酢酸鉄(II):Acetic Acid Iron(II) Salt
  2. 東芝やキヤノンが優位、微細加工技術の「ナノインプリント」
  3. 化学に関係ある国旗を集めてみた
  4. 国際化学オリンピックのお手伝いをしよう!
  5. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~ 1
  6. 米ファイザー、コレステロール薬の開発中止
  7. 有機溶媒系・濃厚分散系のための微粒子分散・凝集評価【終了】
  8. 論文執筆&出版を学ぶポータルサイト
  9. 株式会社ジーシーってどんな会社?
  10. E-mail Alertを活用しよう!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
« 9月   11月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

ケミカルバイオロジー・生体関連化学用途の分子構造において、とにかくよく見かけるポリエチレングリコール…

バリー・ハリウェル Barry Halliwell

バリー・ハリウェル (Barry Halliwell、1949年10月18日-)は、イギリスの生化学…

湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果による電子スピン状態の変化と特異性〜

第342回のスポットライトリサーチは、広島大学大学院 先進理工系科学研究科・宮澤友樹 さんにお願いし…

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP