[スポンサーリンク]

一般的な話題

高専シンポジウム in KOBE に参加しました –その 1: ヒノキの精油で和歌山みかんを活性化–

[スポンサーリンク]

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE に参加してきました。高専らしいユニークな研究を発見したので、この場を借りて紹介しようと思います。

高専シンポジウムって何?

全国におよそ 50 ある高専の学生や教員が集まり、日頃の教育や研究の成果を発表する場です。高専が有するすべての学科の研究発表が集まるため、化学だけでなく機械や情報関係の発表もあります。まさに異種格闘技場ともいうべき学会です。このような事情があるので発表分野の分類方法はざっくりしています。化学系の学科に関係するものですと、化学、生物、環境、材料といったところです。なので、特定の分野の研究者が集まって、それぞれの研究成果について深く議論し合うというよりは、他高専の学生や先生と広く交流するといった意味合いが強いです。

しかし、「広く交流する目的」といっても本科生 5 年生(B2 相当) からすると、初めての学外での研究発表の場となる場合が多いです。発表前に原稿らしき紙をじっと見つめている様子や発表中の様子からは、緊張感が伝わって来ました。かくいう私も、専攻科 2 年生にして初めて高専シンポジウムに参加しました。高専生には、高専生に対して親近感を見出す習性があるのか、アットホームな雰囲気で、とっても楽しかったです。折角なので高専の研究について紹介しつつ、シンポジウムの様子をレポートいたします。

第23回高専シンポジウム in KOBE

宣伝用のポスターのデザインは、港町 神戸のランドマークであるポートタワーと神戸海洋博物館(左の図)。オシャレな雰囲気です。校舎の外見も近代的で綺麗 (右の写真)。

第 23 回の高専シンポジウムは、神戸市立工業高等専門学校で開催されました。全国におよそ 50 ある高専のほとんどが国立であることと対照的に、この神戸高専は唯一の “市立” 高専です。高専シンポジウムが公立高専で主催されるのは、第 23 回目にして初めてのことだそう。私は部活動の関係で他の高専にも訪れたことはありますが、この神戸高専は心なしか敷地が小さいです。寮もありません。

とまあ、そんな高専生にしか興味を持たれないマニアックな話題はこのあたりにしましょう。真面目に口頭発表とポスター発表を聞いて、それぞれ独断で面白いと思ったものを 1 つずつ選んできました。本記事では、和歌山高専 生物応用化学科 土井研究室から、同じく和歌山高専の中村友香さんの口頭発表について紹介します。

テルペン類によるトリメチルアミンの消臭メカニズムの解析

概要

和歌山名物ミカンの肥料を作る際の原料から発生する悪臭物質を、和歌山に豊富な樹木であるヒノキに含まれる物質を用いて除去しよう、という地元愛の溢れる研究です。

背景

和歌山県の特産品であるミカンを栽培するにあたり、古くからニシンの魚粉が肥料として良いとされてきました。しかし、ニシンの漁獲量は減少しており、現在利用されている魚粉の多くは南米産のイワシを原料とした輸入品です。そんななか 2013 年に転機が訪れます。カナダの法律の改正によって、カズノコを取る目的で、卵を抱えたニシンを輸入できるようになったのです1。このとき、親であるニシンを廃棄してしまってはもったいないですよね。高品質な魚粉を安価に製造するために、カズノコを取った後で、ニシンの廃棄物をリサイクルしたいところです。

問題設定

ただし、魚の廃棄物は想像通り臭いです。実際、特定悪臭物質であるトリメチルアミンがそこから発生することが知られています2。トリメチルアミンは揮発性の物質で、生臭い魚臭の原因として知られています3。ニシンの廃棄物から魚粉を製造するためには、その悪臭を除去する技術が必要です。

アプローチ

ヒノキなどの植物の精油に含まれるモノテルペン類が、アンモニアに対して消臭効果を持つことは既に知られています4。アンモニアといえば、トイレの臭い (いわゆるアンモニア臭) の原因です。そしてその化学構造はトリメチルアミンと類似しています (下図)。ということは、トリメチルアミンも、モノテルペン類で消臭できるのでは?という考えが浮かびます。

実はヒノキは、和歌山県に多く植えられている樹木です。したがって、ヒノキの精油を用いてトリメチルアミンの消臭技術を確立できれば、和歌山の林業とミカン農業の双方の活性化につながると考えられます。このことが本研究の隠れた狙いです。

実験と結果

水蒸気蒸留法や種々の有機溶媒による溶剤抽出法により、ヒノキのおが粉から精油を採取しました。得られた抽出物を GCMS で分析し、含まれる成分の種類と濃度を調べました。これらの結果とアンモニアの消臭に関する文献をもとに4α-ピネンβ-ピネン、そしてリモネンに着目しました。それらのテルペンとトリメチルアミンをそれぞれデシケーター中に注入して、適宜、気体検知管でトリメチル濃度を測定しました。その結果、3 時間後にはいずれのテルペンの場合も、トリメチルアミンの濃度がおよそ30~50%程度減少しました。このことから、それらのテルペン類による消臭効果を実証することができました。つづいて、消臭メカニズムについての知見を得るために、NMR による分析も行ったところ、テルペン類に化学反応が起きているわけでわけではないことが確かめられました。

今回着目したモノテルペン (立体についてはメモを取るのを忘れていました)

コメント

地元愛溢れる研究の動機に感動しました。高専では、この研究のように地域貢献の視点を持った研究が比較的多いと言われています。地元企業と共同研究をしている場合もあります。

今後の発展を期待して、研究成果についても僭越ながらコメントします。とりあえずは狙い通り、ヒノキの精油がトリメチルアミンに効くことは実証できました。ただし、発表ではトリメチルアミンの濃度低下にしか言及されておらず、実際のにおいがどの程度だったのかについては触れられていませんでした。今後は、人間の嗅覚上の閾値や、異臭として認知されるかどうかの許容範囲 (?) といった、具体的な数値目標も重要になってくるのではないかと思います。

一方で、トリメチルアミンの濃度を低下できなくても、テルペン類自体の香りでトリメチルアミンの匂いをごまかせちゃったりできたりして…なーんてことも考えられます。後で、調べてみて知ったのですが、その消臭法は専門的にはマスキング法というそうです5

実際の臭いの話はさておき、トリメチルアミンの濃度が確かに低下したということなので、そのメカニズムに関しても気になるところです。実は発表を聞いている最中は、化学反応で消臭するのかと予想していました。例えばトリメチルアミンのようなアミン類は、それが塩基性であることを利用して、酸系のもので中和できると考えられます。くわえて、窒素原子上に水素を持つアンモニアであれば、アルデヒドと反応することや、いわゆる Michael アクセプターに対して付加反応を起こすことも予想されます5

 

しかし、今回使用したテルペン類は、どうにも炭化水素類です。トリメチルアミンと反応しそうな部位はありません。実際にトリメチルアミンに反応が起こっていないことが NMR で確認できたということを聞いて、「なーんだ、やっぱり反応はしないのか」と一人で考えを巡らせていました。消臭メカニズムの解明には、さらなる調査が必要になると思います。今後の展開に期待しています。引き続き頑張ってください!

次回予告

次回は、米子高専 物質工学科 谷藤研究室の菅野由稀さんのポスター発表について紹介します。狙った訳ではありませんが、次回もアミン系のにおいが漂う研究を選んでしまいました。具体的には、卵の殻の膜を燃料電池の電解質膜に用いて、牛の尿で発電しちゃった、という研究です。乞うご期待!

関連記事

外部リンク

参考文献

  1. カナダ政府, 輸出規制品リストの改正 http://gazette.gc.ca/rp-pr/p2/2013/2013-02-13/html/sor-dors12-eng.html (accessed Feb 6, 2018).
  2.  環境省環境管理局大気生活環境室, 臭気対策行政ガイドブック[online], April, 2012, https://www.env.go.jp/air/akushu/guidebook/01.pdf(accessed Feb 6, 2018).
  3. 高橋素子 「Q&A 食べる魚の全疑問 魚屋さんもびっくりその正体」講談社, 2003, pp 113–114.
  4. Wen, F. J.; Yoo, K. S.; Li, J. K. Advanced materials Research 2012, 518–523, 2224–2228 (DOI: 10.4028/www.scientific.net/AMR.518-523.2224).
  5. 独立行政法人 工業所有権情報·研修館, 消臭·脱臭剤 (化学的方法) [online] March, 2006, http://www.inpit.go.jp/blob/katsuyo/pdf/chart/fippan16.pdf (accessed Feb 6, 2018).
  6. 谷田貝光克 におい·環境学会誌, 2008, 38, 428–434 (DOI: 10.2171/jao.38.428).

関連書籍

[amazonjs asin=”4061543792″ locale=”JP” title=”香料の科学 (KS化学専門書)”]
Avatar photo

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. 化学反応を自動サンプリング! EasySampler 1210
  2. 第6回ICReDD国際シンポジウム開催のお知らせ
  3. 第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の…
  4. 【誤解してない?】4s軌道はいつも3d軌道より低いわけではない
  5. 「化学の匠たち〜情熱と挑戦〜」(日本化学会春季年会市民公開講座)…
  6. 細孔内単分子ポリシラン鎖の特性解明
  7. 最後に残ったストリゴラクトン
  8. ベンゼン環記法マニアックス

注目情報

ピックアップ記事

  1. 環境、人体に優しい高分子合成を開発 静大と製薬会社が開発
  2. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  3. 電子1個の精度で触媒ナノ粒子の電荷量を計測
  4. 製薬業界の研究開発費、増加へ
  5. 2007年度ノーベル化学賞を予想!(1)
  6. 広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始
  7. Organic Synthesis Workbook
  8. 嗚呼、美しい高分子の世界
  9. スルホキシド/セレノキシドのsyn-β脱離 Syn-β-elimination of Sulfoxide/Selenoxide
  10. 自律的に化学実験するロボット科学者、研究の自動化に成功 8日間で約700回の実験、人間なら数カ月

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年2月
 1234
567891011
12131415161718
19202122232425
262728  

注目情報

最新記事

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP