[スポンサーリンク]

化学者のつぶやき

エノールエーテルからα-三級ジアルキルエーテルをつくる

[スポンサーリンク]

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルとオレフィンからα-三級ジアルキルエーテルが合成できる。

α-三級ジアルキルエーテルの合成

ジアルキルエーテルは、化合物の水溶性を高め代謝安定性の改善に寄与する[1]。そのため医薬品に多く見られる骨格である[2]。ジアルキルエーテルの構築法は、Williamsonエーテル合成が代表的であるが、嵩高いa-三級ジアルキルエーテルを合成する場合、脱離反応が競合する。この課題を解決する効率的なα-三級ジアルキルエーテル合成法は少なく、導入可能な置換基の種類も限られていた。
近年、優れたa-三級ジアルキルエーテル合成法が開発されたが[3,4]、カルボカチオンを経由するこれら手法と相補的なアプローチとして、α-オキシラジカルを利用したジアルキルエーテル合成法が知られる。BaranShenviらは、金属ヒドリド水素原子移動(MHAT)を利用して、エノールエーテルよりα-オキシラジカルを発生させ、ジアルキルエーテルを合成した(図 1A)[5,6]。一方でDoyleやWangらは、酸性条件下、アセタールにニッケル触媒と亜鉛を作用させることで、ジアルキルエーテルの合成に成功した(図 1B-i) [7,8]。中間体のa-オキシラジカルは、アセタールから得られるオキソカルベニウムイオンの還元により生成する。しかし、α-オキシラジカルを経由するこれらの反応における生成物は、α-二級ジアルキルエーテルに限られていた。本論文の著者であるDixonらは、先行研究において可視光レドックス触媒存在下、アリール基をもつケタールよりα-オキシラジカルを発生させることで、α-三級ジアルキルエーテルの構築に成功した(図 1B-ii) [9]
今回著者らは、エノールエーテルよりa-オキシラジカルを発生させるα-三級ジアルキルエーテルの合成法を開発した(図 1C)。本手法は、全ての置換基がアルキル化されたa-三級ジアルキルエーテルも効率的に合成することができ、広い官能基許容性をもつ。

図 1. (A) MHATを利用したジアルキルエーテル合成法、 (B)SETを利用したジアルキルエーテル合成法、(C) 今回の反応

 

“αTertiary Dialkyl Ether Synthesis via Reductive Photocatalytic αFunctionalization of Alkyl Enol Ethers”

Leitch, J. A.; Rossolini, T.; Rogova, T.; Dixon, D. J. ACS Catal. 2020, 10, 11430–11437.

DOI: 10.1021/acscatal.0c02584

論文著者の紹介


研究者: Darren Dixon
研究者の経歴:
1993–1997 Ph.D., University of Oxford, UK (Prof. Stephen. G. Davies)
1997–2000 Postdoc, University of Cambridge, UK (Prof. Steven. V. Ley)
2000–2004 Senior Assistant, University of Cambridge, UK
2004–2007 Senior Lecturer, University of Manchester, UK
2007–2008 Reader, University of Manchester, UK
2008–present Professor, University of Oxford, UK
2014–present Director, EPSRC CDT in Synthesis for Biology and Medicine, University of Oxford, UK
研究内容:遷移金属触媒を用いた新規反応開発、光化学反応、天然物合成
論文の概要
可視光レドックス触媒とHantzsch ester誘導体、TMSCl存在下、エノールエーテル1とオレフィン2に対し可視光を照射することでα-三級ジアルキルエーテル3を与えた(図 2A)。オレフィンとしては、デヒドロアラニン誘導体(2a)やフェニルビニルスルホキシド(2b)が利用できる他、オキサゾリジノン誘導体(2c)を用いた場合には、高いジアステレオ選択性で対応する3が得られた。本反応はシクロブタン(1d)やフラン(1e)をもつエノールエーテルにも適用できた。
本反応は、以下の反応機構が提唱されている(図 2B)。まず可視光照射によって励起されたイリジウム触媒がHantzsch ester誘導体を酸化する。生じたイリジウム(II)から、オキソカルベニウムイオンへの一電子移動(SET)が起こり、α-オキシラジカルを生成する。その後、オレフィンへのギースラジカル付加反応と続く水素原子移動(HAT)を経て、α-三級ジアルキルエーテルを与える。なお、TMSClはオキソカルベニウムイオンの調製の際にルイス酸として働く。

図 2. (A) 基質適用範囲、(B) 推定反応機構

 

以上、可視光レドックス触媒を用いた、α-三級ジアルキルエーテル合成法が開発された。今後は本反応を用いた医薬品の合成など、より実用的な応用が期待される。

参考文献

  1. Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem., Int. Ed. 2006, 45, 7736–7739. DOI: 10.1002/anie.200602343
  2. McGrath, N. A.; Brichacek, M.; Njardarson, J. T.A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. Chem. Educ. 2010, 87, 1348–1349. DOI: 10.1021/ed1003806
  3. Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Hindered Dialkyl Ether Synthesis with Electrogenerated Carbocations. Nature 2019, 573, 398–402. DOI:1038/s41586-019-1539-y
  4. Hibutani, S.; Kodo, T.; Takeda, M.; Nagao, K.; Tokunaga, N.; Sasaki, Y.; Ohmiya, H. Organophotoredox-Catalyzed Decarboxylative C(sp3)–O Bond Formation. J. Am. Chem. Soc. 2020, 142, 1211–1216. DOI: 10.1021/jacs.9b12335
  5. Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon−Carbon Bonds. Nature 2014, 516, 343– DOI: 10.1038/nature14006
  6. Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. Hydroalkylation of Olefins to Form Quaternary Carbons. J.  Am. Chem. Soc.2019, 141, 7709–7714. DOI: 10.1021/jacs.9b02844
  7. Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  8. Lin, Z.; Lan, Y.; Wang, C. Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. ACS Catal. 2019, 9, 775–780. DOI: 1021/acscatal.8b04348
  9. Rossolini, T.; Ferko, B.; Dixon, D. J. Photocatalytic Reductive Formation of a-Tertiary Ethers from Ketals. Org. Lett. 2019, 21, 6668–6673. DOI: 10.1021/acs.orglett.9b02273
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. テクノシグマのミニオイルバス MOB-200 を試してみた
  2. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  3. アラインをパズルのピースのように繋げる!
  4. 求電子的インドール:極性転換を利用したインドールの新たな反応性!…
  5. ハリーポッターが参考文献に登場する化学論文
  6. クロスメタセシスによる三置換アリルアルコール類の合成
  7. マクマリーを超えてゆけ!”カルボニルクロスメタセシス反応”
  8. 化学者と不妊治療

注目情報

ピックアップ記事

  1. カーン グリコシド化反応 Kahne Glycosidation
  2. 有機化合物のスペクトルによる同定法―MS,IR,NMRの併用 (第7版)
  3. 光と熱で固体と液体を行き来する金属錯体
  4. 有機合成化学協会誌2021年11月号:英文特集号 Special Issue in English
  5. 豊丘出身、元島さんCMC開発
  6. π-アリルイリジウムに新たな光を
  7. 第46回藤原賞、岡本佳男氏と大隅良典氏に
  8. 分子素子の働き せっけんで確認
  9. それは夢から始まったーベンゼンの構造提唱から150年
  10. ティム・スワガー Timothy M. Swager

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP