[スポンサーリンク]

化学者のつぶやき

エノールエーテルからα-三級ジアルキルエーテルをつくる

[スポンサーリンク]

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルとオレフィンからα-三級ジアルキルエーテルが合成できる。

α-三級ジアルキルエーテルの合成

ジアルキルエーテルは、化合物の水溶性を高め代謝安定性の改善に寄与する[1]。そのため医薬品に多く見られる骨格である[2]。ジアルキルエーテルの構築法は、Williamsonエーテル合成が代表的であるが、嵩高いa-三級ジアルキルエーテルを合成する場合、脱離反応が競合する。この課題を解決する効率的なα-三級ジアルキルエーテル合成法は少なく、導入可能な置換基の種類も限られていた。
近年、優れたa-三級ジアルキルエーテル合成法が開発されたが[3,4]、カルボカチオンを経由するこれら手法と相補的なアプローチとして、α-オキシラジカルを利用したジアルキルエーテル合成法が知られる。BaranShenviらは、金属ヒドリド水素原子移動(MHAT)を利用して、エノールエーテルよりα-オキシラジカルを発生させ、ジアルキルエーテルを合成した(図 1A)[5,6]。一方でDoyleやWangらは、酸性条件下、アセタールにニッケル触媒と亜鉛を作用させることで、ジアルキルエーテルの合成に成功した(図 1B-i) [7,8]。中間体のa-オキシラジカルは、アセタールから得られるオキソカルベニウムイオンの還元により生成する。しかし、α-オキシラジカルを経由するこれらの反応における生成物は、α-二級ジアルキルエーテルに限られていた。本論文の著者であるDixonらは、先行研究において可視光レドックス触媒存在下、アリール基をもつケタールよりα-オキシラジカルを発生させることで、α-三級ジアルキルエーテルの構築に成功した(図 1B-ii) [9]
今回著者らは、エノールエーテルよりa-オキシラジカルを発生させるα-三級ジアルキルエーテルの合成法を開発した(図 1C)。本手法は、全ての置換基がアルキル化されたa-三級ジアルキルエーテルも効率的に合成することができ、広い官能基許容性をもつ。

図 1. (A) MHATを利用したジアルキルエーテル合成法、 (B)SETを利用したジアルキルエーテル合成法、(C) 今回の反応

 

“αTertiary Dialkyl Ether Synthesis via Reductive Photocatalytic αFunctionalization of Alkyl Enol Ethers”

Leitch, J. A.; Rossolini, T.; Rogova, T.; Dixon, D. J. ACS Catal. 2020, 10, 11430–11437.

DOI: 10.1021/acscatal.0c02584

論文著者の紹介


研究者: Darren Dixon
研究者の経歴:
1993–1997 Ph.D., University of Oxford, UK (Prof. Stephen. G. Davies)
1997–2000 Postdoc, University of Cambridge, UK (Prof. Steven. V. Ley)
2000–2004 Senior Assistant, University of Cambridge, UK
2004–2007 Senior Lecturer, University of Manchester, UK
2007–2008 Reader, University of Manchester, UK
2008–present Professor, University of Oxford, UK
2014–present Director, EPSRC CDT in Synthesis for Biology and Medicine, University of Oxford, UK
研究内容:遷移金属触媒を用いた新規反応開発、光化学反応、天然物合成
論文の概要
可視光レドックス触媒とHantzsch ester誘導体、TMSCl存在下、エノールエーテル1とオレフィン2に対し可視光を照射することでα-三級ジアルキルエーテル3を与えた(図 2A)。オレフィンとしては、デヒドロアラニン誘導体(2a)やフェニルビニルスルホキシド(2b)が利用できる他、オキサゾリジノン誘導体(2c)を用いた場合には、高いジアステレオ選択性で対応する3が得られた。本反応はシクロブタン(1d)やフラン(1e)をもつエノールエーテルにも適用できた。
本反応は、以下の反応機構が提唱されている(図 2B)。まず可視光照射によって励起されたイリジウム触媒がHantzsch ester誘導体を酸化する。生じたイリジウム(II)から、オキソカルベニウムイオンへの一電子移動(SET)が起こり、α-オキシラジカルを生成する。その後、オレフィンへのギースラジカル付加反応と続く水素原子移動(HAT)を経て、α-三級ジアルキルエーテルを与える。なお、TMSClはオキソカルベニウムイオンの調製の際にルイス酸として働く。

図 2. (A) 基質適用範囲、(B) 推定反応機構

 

以上、可視光レドックス触媒を用いた、α-三級ジアルキルエーテル合成法が開発された。今後は本反応を用いた医薬品の合成など、より実用的な応用が期待される。

参考文献

  1. Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem., Int. Ed. 2006, 45, 7736–7739. DOI: 10.1002/anie.200602343
  2. McGrath, N. A.; Brichacek, M.; Njardarson, J. T.A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. Chem. Educ. 2010, 87, 1348–1349. DOI: 10.1021/ed1003806
  3. Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Hindered Dialkyl Ether Synthesis with Electrogenerated Carbocations. Nature 2019, 573, 398–402. DOI:1038/s41586-019-1539-y
  4. Hibutani, S.; Kodo, T.; Takeda, M.; Nagao, K.; Tokunaga, N.; Sasaki, Y.; Ohmiya, H. Organophotoredox-Catalyzed Decarboxylative C(sp3)–O Bond Formation. J. Am. Chem. Soc. 2020, 142, 1211–1216. DOI: 10.1021/jacs.9b12335
  5. Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon−Carbon Bonds. Nature 2014, 516, 343– DOI: 10.1038/nature14006
  6. Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. Hydroalkylation of Olefins to Form Quaternary Carbons. J.  Am. Chem. Soc.2019, 141, 7709–7714. DOI: 10.1021/jacs.9b02844
  7. Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  8. Lin, Z.; Lan, Y.; Wang, C. Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. ACS Catal. 2019, 9, 775–780. DOI: 1021/acscatal.8b04348
  9. Rossolini, T.; Ferko, B.; Dixon, D. J. Photocatalytic Reductive Formation of a-Tertiary Ethers from Ketals. Org. Lett. 2019, 21, 6668–6673. DOI: 10.1021/acs.orglett.9b02273

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します…
  2. 実験を加速する最新機器たち|第9回「有機合成実験テクニック」(リ…
  3. どろどろ血液でもへっちゃら
  4. 狙いを定めて、炭素-フッ素結合の変換!~光触媒とスズの協働作用~…
  5. アズレンの蒼い旅路
  6. 【12月開催】第4回 マツモトファインケミカル技術セミナー有機金…
  7. ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発…
  8. 薬学会年会も付設展示会キャンペーンやっちゃいます

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学業界と就職活動
  2. CV測定器を使ってみた
  3. 明るい未来へ~有機薄膜太陽電池でエネルギー変換効率7.4%~
  4. リアル「ブレイキング・バッド」!薬物製造元教授を逮捕 中国
  5. 読むだけで身につく化学千夜一夜物語 食品、日用品から最先端技術まで75話
  6. アニリン版クメン法
  7. 第二回ケムステVプレミアレクチャー「重水素標識法の進歩と未来」を開催します!
  8. マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎
  9. 幾何学の定理を活用したものづくり
  10. セメントから超電導物質 絶縁体のはずなのに

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP