[スポンサーリンク]

化学者のつぶやき

エノールエーテルからα-三級ジアルキルエーテルをつくる

[スポンサーリンク]

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルとオレフィンからα-三級ジアルキルエーテルが合成できる。

α-三級ジアルキルエーテルの合成

ジアルキルエーテルは、化合物の水溶性を高め代謝安定性の改善に寄与する[1]。そのため医薬品に多く見られる骨格である[2]。ジアルキルエーテルの構築法は、Williamsonエーテル合成が代表的であるが、嵩高いa-三級ジアルキルエーテルを合成する場合、脱離反応が競合する。この課題を解決する効率的なα-三級ジアルキルエーテル合成法は少なく、導入可能な置換基の種類も限られていた。
近年、優れたa-三級ジアルキルエーテル合成法が開発されたが[3,4]、カルボカチオンを経由するこれら手法と相補的なアプローチとして、α-オキシラジカルを利用したジアルキルエーテル合成法が知られる。BaranShenviらは、金属ヒドリド水素原子移動(MHAT)を利用して、エノールエーテルよりα-オキシラジカルを発生させ、ジアルキルエーテルを合成した(図 1A)[5,6]。一方でDoyleやWangらは、酸性条件下、アセタールにニッケル触媒と亜鉛を作用させることで、ジアルキルエーテルの合成に成功した(図 1B-i) [7,8]。中間体のa-オキシラジカルは、アセタールから得られるオキソカルベニウムイオンの還元により生成する。しかし、α-オキシラジカルを経由するこれらの反応における生成物は、α-二級ジアルキルエーテルに限られていた。本論文の著者であるDixonらは、先行研究において可視光レドックス触媒存在下、アリール基をもつケタールよりα-オキシラジカルを発生させることで、α-三級ジアルキルエーテルの構築に成功した(図 1B-ii) [9]
今回著者らは、エノールエーテルよりa-オキシラジカルを発生させるα-三級ジアルキルエーテルの合成法を開発した(図 1C)。本手法は、全ての置換基がアルキル化されたa-三級ジアルキルエーテルも効率的に合成することができ、広い官能基許容性をもつ。

図 1. (A) MHATを利用したジアルキルエーテル合成法、 (B)SETを利用したジアルキルエーテル合成法、(C) 今回の反応

 

“αTertiary Dialkyl Ether Synthesis via Reductive Photocatalytic αFunctionalization of Alkyl Enol Ethers”

Leitch, J. A.; Rossolini, T.; Rogova, T.; Dixon, D. J. ACS Catal. 2020, 10, 11430–11437.

DOI: 10.1021/acscatal.0c02584

論文著者の紹介


研究者: Darren Dixon
研究者の経歴:
1993–1997 Ph.D., University of Oxford, UK (Prof. Stephen. G. Davies)
1997–2000 Postdoc, University of Cambridge, UK (Prof. Steven. V. Ley)
2000–2004 Senior Assistant, University of Cambridge, UK
2004–2007 Senior Lecturer, University of Manchester, UK
2007–2008 Reader, University of Manchester, UK
2008–present Professor, University of Oxford, UK
2014–present Director, EPSRC CDT in Synthesis for Biology and Medicine, University of Oxford, UK
研究内容:遷移金属触媒を用いた新規反応開発、光化学反応、天然物合成
論文の概要
可視光レドックス触媒とHantzsch ester誘導体、TMSCl存在下、エノールエーテル1とオレフィン2に対し可視光を照射することでα-三級ジアルキルエーテル3を与えた(図 2A)。オレフィンとしては、デヒドロアラニン誘導体(2a)やフェニルビニルスルホキシド(2b)が利用できる他、オキサゾリジノン誘導体(2c)を用いた場合には、高いジアステレオ選択性で対応する3が得られた。本反応はシクロブタン(1d)やフラン(1e)をもつエノールエーテルにも適用できた。
本反応は、以下の反応機構が提唱されている(図 2B)。まず可視光照射によって励起されたイリジウム触媒がHantzsch ester誘導体を酸化する。生じたイリジウム(II)から、オキソカルベニウムイオンへの一電子移動(SET)が起こり、α-オキシラジカルを生成する。その後、オレフィンへのギースラジカル付加反応と続く水素原子移動(HAT)を経て、α-三級ジアルキルエーテルを与える。なお、TMSClはオキソカルベニウムイオンの調製の際にルイス酸として働く。

図 2. (A) 基質適用範囲、(B) 推定反応機構

 

以上、可視光レドックス触媒を用いた、α-三級ジアルキルエーテル合成法が開発された。今後は本反応を用いた医薬品の合成など、より実用的な応用が期待される。

参考文献

  1. Wuitschik, G.; Rogers-Evans, M.; Müller, K.; Fischer, H.; Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Oxetanes as Promising Modules in Drug Discovery. Angew. Chem., Int. Ed. 2006, 45, 7736–7739. DOI: 10.1002/anie.200602343
  2. McGrath, N. A.; Brichacek, M.; Njardarson, J. T.A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. Chem. Educ. 2010, 87, 1348–1349. DOI: 10.1021/ed1003806
  3. Xiang, J.; Shang, M.; Kawamata, Y.; Lundberg, H.; Reisberg, S. H.; Chen, M.; Mykhailiuk, P.; Beutner, G.; Collins, M. R.; Davies, A.; Del Bel, M.; Gallego, G. M.; Spangler, J. E.; Starr, J.; Yang, S.; Blackmond, D. G.; Baran, P. S. Hindered Dialkyl Ether Synthesis with Electrogenerated Carbocations. Nature 2019, 573, 398–402. DOI:1038/s41586-019-1539-y
  4. Hibutani, S.; Kodo, T.; Takeda, M.; Nagao, K.; Tokunaga, N.; Sasaki, Y.; Ohmiya, H. Organophotoredox-Catalyzed Decarboxylative C(sp3)–O Bond Formation. J. Am. Chem. Soc. 2020, 142, 1211–1216. DOI: 10.1021/jacs.9b12335
  5. Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Functionalized Olefin Cross-Coupling to Construct Carbon−Carbon Bonds. Nature 2014, 516, 343– DOI: 10.1038/nature14006
  6. Green, S. A.; Huffman, T. R.; McCourt, R. O.; van der Puyl, V.; Shenvi, R. A. Hydroalkylation of Olefins to Form Quaternary Carbons. J.  Am. Chem. Soc.2019, 141, 7709–7714. DOI: 10.1021/jacs.9b02844
  7. Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  8. Lin, Z.; Lan, Y.; Wang, C. Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C–F and C–O Bond Cleavage. ACS Catal. 2019, 9, 775–780. DOI: 1021/acscatal.8b04348
  9. Rossolini, T.; Ferko, B.; Dixon, D. J. Photocatalytic Reductive Formation of a-Tertiary Ethers from Ketals. Org. Lett. 2019, 21, 6668–6673. DOI: 10.1021/acs.orglett.9b02273
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. エルゼビアからケムステ読者に特別特典!
  2. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  3. Open Babel を使ってみよう~ケモインフォマティクス入門…
  4. 暑いほどエコな太陽熱冷房
  5. 株式会社ジーシーってどんな会社?
  6. 2009年人気記事ランキング
  7. 無金属、温和な条件下で多置換ピリジンを構築する
  8. 水を含み湿度に応答するラメラ構造ポリマー材料の開発

注目情報

ピックアップ記事

  1. 砂糖から透明樹脂、大阪府立大などが開発に成功
  2. 第六回ケムステVシンポ「高機能性金属錯体が拓く触媒科学」
  3. ビールに使われている炭水化物を特定する方法が発見される
  4. メーヤワイン試薬 Meerwein Reagent
  5. クマリンを用いたプロペラ状π共役系発光色素の開発
  6. 文具に凝るといふことを化学者もしてみむとてするなり⑫: XP-PEN Deco01の巻
  7. 1-フルオロ-2,4,6-トリメチルピリジニウムトリフルオロメタンスルホナート : 1-Fluoro-2,4,6-trimethylpyridinium Trifluoromethanesulfonate
  8. n型半導体特性を示すペリレン誘導体
  9. 下嶋 敦 Shimojima Atsushi
  10. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP