[スポンサーリンク]

ケムステニュース

ヘリウムガスのリサイクルに向けた検討がスタート

[スポンサーリンク]

冷やすと電気抵抗がゼロになる超電導材料の低温研究から医療機器や半導体製造まで、幅広く使われているヘリウムの調達が難しくなっている。ヘリウムを使用後に大気放出している企業に対し、研究所がリサイクルを手伝うことで“ヘリウム危機”を乗り越えられないか、検討に入った。  (引用:日刊工業新聞6月7日)

NMRやGCでおなじみのヘリウムですが、過去幾度となく供給不足になってきました。筆者がGCを管理していた時は、ヘリウムガスの納期が三週間以上かかり悩まされていた時もありました。そのヘリウムガスについて世界生産の約6割を占める米国は戦略物資と位置付け、国外への販売を2021年に終了します。また同じく生産の3割を占めるカタールは周辺国との国交断絶で船便の遅れが目立っています。このような状況で販売が絞られ値上げが進行しています。

日本での状況に目を向けると、販売量は過去5年間、横ばいで需要の変化はありません。主の用途はNMR+MRI(以下、核磁気共鳴装置)の超電導コイルの冷却や半導体、光ファイバーの製造に使われています。リークテストというのは、気体や液体の配管を向上などで作った後に漏れがないか調べることで、配管を真空にして接合した箇所に外側からヘリウムガスを噴射します。漏れがあると配管内にヘリウムが混入し接続した検出器がヘリウムを検知する仕組みです。減圧できない場合には、配管をヘリウムで満たし検出器を接合個所に近づけてヘリウムが漏れていないか確認します。空気中にヘリウムが微量しか含まれていないこと、不活性ガスで毒性・爆発性がなく安全であること、分子径が小さいため漏れ箇所に入りやすいこと、試験体などからの放出ガスにはほとんど含まれないことからヘリウムが使われています。

各大学にはNMRをはじめとするヘリウムを使用する機器が多く稼働していますが、ヘリウム再生設備をもつ大学も珍しくはありません。このような大学では、機器から排出されたヘリウムは配管を通して管理設備(低温センターと呼ばれる施設)で回収、精製、液化されるので70%以上はリサイクルされているようです。一方、民間では、回収して再使用することはほとんど行われていません。それはヘリウムの使用用途によっては、空気や他のガスと混ざってしまい再生を困難にしているからです。また純粋なヘリウムガスの再液化であっても設備はとても高価です。さらに高圧ガス保安法では、ガスを昇圧したり液化することも製造行為として定義されていて、届け出が必要になります。このような障壁でヘリウムの再生設備は民間では導入されていないようです。そのためヘリウムの価格が上がっても需要が急激に減少することはなく、研究所などへの供給には後回しになっていて、宇宙航空研究開発機構(JAXA)は、観測気球用ヘリウムが十分に確保できず実験計画を変更したことを記者会見で明らかにしたそうです。

金沢大学のヘリウム液化設備(引用:金沢大学

このようにヘリウムの供給が緩和される希望はなく、民間では自前で再利用する設備の積極的な導入が期待できないことから、民間の使用済みのヘリウムを回収して大学の再生設備を利用して再利用する構想が、東大物性研を中心に考えられています。液化装置は巨大ですが、加圧してガスシリンダーで戻すくらいならば核磁気共鳴装置に付帯すること可能であると思います。

東大、物性研でのヘリウム回収率(引用:物性研究所 低温液化室

上記に取り組みに関しては、ヘリウムの充填が不要なNMRは開発されていますが、NMRは寿命の長い機器であり、すぐに日本中のNMRが切り替わるとは考えにくいので、核磁気共鳴装置から蒸発するヘリウムガスの回収においては大変有効であると思います。ただし、ガスをシリンダー貯めるためには加圧が必要です。ヘリウムの5MPaを超える加圧も高圧ガス保安法では製造行為となりますので、たくさん貯めようとすると大きな容器が必要になります。さらに磁性の容器は核磁気共鳴装置にくっついてしまうのでより高価な非磁性のガスシリンダーが必要になります。その制約と再生設備までの配送コストで割に合うかどうかがポイントではないでしょうか。

ヘリウムの産出地は限られていますが、新たな場所が見つかったという報道もあります。取引価格がさらに上昇すれば、新たな場所からの採掘や精製テクノロジーの商業化のニーズが上昇しそれによって供給が増え、供給が安定されることに期待します。

関連書籍

関連リンクとケムステ過去記事

 

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. 米化学大手デュポン、EPAと和解か=新生児への汚染めぐり
  2. ダウ・ケミカル、液晶パネル用化学品をアジア生産へ
  3. アラン・マクダイアミッド氏死去
  4. 存命化学者達のハーシュ指数ランキングが発表
  5. <理研研究員>「論文3本」の実験データ改ざん
  6. 合同資源産業:ヨウ素化合物を作る新工場完成--長生村の千葉事業所…
  7. 2021年、ムーアの法則が崩れる?
  8. 中皮腫治療薬を優先審査へ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 炭素置換Alアニオンの合成と性質の解明
  2. 化学者の単語登録テクニック
  3. メカニカルスターラー
  4. 花粉症対策の基礎知識
  5. ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発
  6. 不斉触媒 Asymmetric Catalysis
  7. 日本企業クモ糸の量産技術確立:強さと柔らかさあわせもつ究極の素材
  8. アレクサンダー・リッチ Alexander Rich
  9. アピオース apiose
  10. 【無料】化学英語辞書がバージョンアップ!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

細胞内の温度をあるがままの状態で測定する新手法の開発 ~「水分子」を温度計に~

第266回のスポットライトリサーチは、東北大学大学院薬学研究科 中林研究室 修士二年生の杉村 俊紀(…

Chem-Station Twitter

PAGE TOP