[スポンサーリンク]

ケムステニュース

ヘリウムガスのリサイクルに向けた検討がスタート

[スポンサーリンク]

冷やすと電気抵抗がゼロになる超電導材料の低温研究から医療機器や半導体製造まで、幅広く使われているヘリウムの調達が難しくなっている。ヘリウムを使用後に大気放出している企業に対し、研究所がリサイクルを手伝うことで“ヘリウム危機”を乗り越えられないか、検討に入った。  (引用:日刊工業新聞6月7日)

NMRやGCでおなじみのヘリウムですが、過去幾度となく供給不足になってきました。筆者がGCを管理していた時は、ヘリウムガスの納期が三週間以上かかり悩まされていた時もありました。そのヘリウムガスについて世界生産の約6割を占める米国は戦略物資と位置付け、国外への販売を2021年に終了します。また同じく生産の3割を占めるカタールは周辺国との国交断絶で船便の遅れが目立っています。このような状況で販売が絞られ値上げが進行しています。

日本での状況に目を向けると、販売量は過去5年間、横ばいで需要の変化はありません。主の用途はNMR+MRI(以下、核磁気共鳴装置)の超電導コイルの冷却や半導体、光ファイバーの製造に使われています。リークテストというのは、気体や液体の配管を向上などで作った後に漏れがないか調べることで、配管を真空にして接合した箇所に外側からヘリウムガスを噴射します。漏れがあると配管内にヘリウムが混入し接続した検出器がヘリウムを検知する仕組みです。減圧できない場合には、配管をヘリウムで満たし検出器を接合個所に近づけてヘリウムが漏れていないか確認します。空気中にヘリウムが微量しか含まれていないこと、不活性ガスで毒性・爆発性がなく安全であること、分子径が小さいため漏れ箇所に入りやすいこと、試験体などからの放出ガスにはほとんど含まれないことからヘリウムが使われています。

各大学にはNMRをはじめとするヘリウムを使用する機器が多く稼働していますが、ヘリウム再生設備をもつ大学も珍しくはありません。このような大学では、機器から排出されたヘリウムは配管を通して管理設備(低温センターと呼ばれる施設)で回収、精製、液化されるので70%以上はリサイクルされているようです。一方、民間では、回収して再使用することはほとんど行われていません。それはヘリウムの使用用途によっては、空気や他のガスと混ざってしまい再生を困難にしているからです。また純粋なヘリウムガスの再液化であっても設備はとても高価です。さらに高圧ガス保安法では、ガスを昇圧したり液化することも製造行為として定義されていて、届け出が必要になります。このような障壁でヘリウムの再生設備は民間では導入されていないようです。そのためヘリウムの価格が上がっても需要が急激に減少することはなく、研究所などへの供給には後回しになっていて、宇宙航空研究開発機構(JAXA)は、観測気球用ヘリウムが十分に確保できず実験計画を変更したことを記者会見で明らかにしたそうです。

金沢大学のヘリウム液化設備(引用:金沢大学

このようにヘリウムの供給が緩和される希望はなく、民間では自前で再利用する設備の積極的な導入が期待できないことから、民間の使用済みのヘリウムを回収して大学の再生設備を利用して再利用する構想が、東大物性研を中心に考えられています。液化装置は巨大ですが、加圧してガスシリンダーで戻すくらいならば核磁気共鳴装置に付帯すること可能であると思います。

東大、物性研でのヘリウム回収率(引用:物性研究所 低温液化室

上記に取り組みに関しては、ヘリウムの充填が不要なNMRは開発されていますが、NMRは寿命の長い機器であり、すぐに日本中のNMRが切り替わるとは考えにくいので、核磁気共鳴装置から蒸発するヘリウムガスの回収においては大変有効であると思います。ただし、ガスをシリンダー貯めるためには加圧が必要です。ヘリウムの5MPaを超える加圧も高圧ガス保安法では製造行為となりますので、たくさん貯めようとすると大きな容器が必要になります。さらに磁性の容器は核磁気共鳴装置にくっついてしまうのでより高価な非磁性のガスシリンダーが必要になります。その制約と再生設備までの配送コストで割に合うかどうかがポイントではないでしょうか。

ヘリウムの産出地は限られていますが、新たな場所が見つかったという報道もあります。取引価格がさらに上昇すれば、新たな場所からの採掘や精製テクノロジーの商業化のニーズが上昇しそれによって供給が増え、供給が安定されることに期待します。

関連書籍

関連リンクとケムステ過去記事

 

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 製薬各社の被災状況②
  2. 超小型シリンジ開発 盛岡の企業
  3. 位相情報を含んだ波動関数の可視化に成功
  4. 化学ベンチャーが食品/医薬/化粧品業界向けに温度検知ゲル「The…
  5. 光触媒で新型肺炎を防止  ノリタケが実証
  6. JSR、東大理物と包括的連携に合意 共同研究や人材育成を促進
  7. 薬の副作用2477症例、HP公開始まる
  8. 始まるPCB処理 利便性追求、重い代償

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ロバート・クラブトリー Robert H. Crabtree
  2. [12]シクロパラフェニレン : [12]Cycloparaphenylene
  3. 細野 秀雄 Hideo Hosono
  4. マイクロ波化学が挑むプラスチックのリサイクル
  5. Whitesides’ Group: Writing a paper
  6. 生合成を模倣しない(–)-jorunnamycin A, (–)-jorumycinの全合成
  7. ジン=クアン・ユー Jin-Quan Yu
  8. 仙台の高校生だって負けてません!
  9. 「抗炎症」と「抗酸化」組み合わせ脱毛抑制効果を増強
  10. ルーブ・ゴールドバーグ反応 その1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年6月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

桝太一が聞く 科学の伝え方

概要サイエンスコミュニケーションとは何か?どんな解決すべき課題があるのか?桝…

レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox)で基質の反応性を見積もる

第389回のスポットライトリサーチは、東京農工大学大学院生物システム応用科学府(生物有機化学研究室)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP