[スポンサーリンク]

スポットライトリサーチ

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

[スポンサーリンク]

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (いわい すぐる)さんにお願いしました。

稲木研究室では、有機化合物や高分子材料のレドックス(酸化還元)化学、特に電極電子移動を鍵ステップとした有機合成法(有機電解合成)を基盤として有用な機能分子・高分子の創製を行っています。プレスリリースの研究は電解重合反応についてで、従来の電解反応では反応系に電気エネルギーを印加しますが、電極に電気エネルギーを供給する電源装置の導入にコストがかかることや、給電のための配線の煩わしさなどが課題となっています。そこで本研究では、希薄電解液をマイクロ流路に送液する際に生じる流動電位を利用して電解反応を駆動することを着想し、本質的に外部から給電する必要のない電解反応技術の開発に成功しました。

この研究成果は、「Communications Chemistry」誌およびプレスリリースに公開されています。

Electropolymerization without an Electric Power Supply

Suguru Iwai, Taichi Suzuki, Hiroki Sakagami, Kazuhiro Miyamoto, Zhenghao Chen, Mariko Konishi, Elena Villani, Naoki Shida, Ikuyoshi Tomita, Shinsuke Inagi

Commun Chem 5, 66 (2022)
DOI: 10.1038/s42004-022-00682-8

研究室を主宰されている教授の稲木 信介先生より、岩井さんについてコメントを頂戴いたしました!

今回の内容は、電解反応であるにもかかわらず本質的に給電を必要としないという、一見矛盾していて挑戦的な課題です。当研究室の歴代の学生が何名も挑みながらも満足な流動電位が発生せず、苦杯を喫してきました。さて、岩井君はというと、なんということでしょう、修士課程に入学後わずか半年ほどで十分な流動電位を観測し、1年以内に電解重合反応にも成功してしまいました・・。そこには本人の苦労と努力の跡がありますので、詳しい経緯は岩井君のインタビューをご覧ください。後から考えればなるほど当たり前ではありますが、実際にその条件を見つけた岩井君の嗅覚と能力は特筆すべきです(もちろん前任者らの蓄積にも敬意を表します)。今後この研究を岩井君がどのように発展させてくれるのか、一緒に楽しみたいと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

流動電位を利用した無給電での導電性高分子の電解重合を達成しました。流動電位とは、内径の小さな流路に電解質濃度の低い溶液を送液した際に流路の入り口と出口の間に発生する電位差を指します。これまでに当研究室では、外部から電圧を印加することでワイヤレスな電極であるバイポーラ電極を駆動し、反応を行っていました(図1a)。一方で、本研究では流動電位を用いることで、外部からの電力を供給することなくバイポーラ電極を駆動し、電気化学反応を行うことができます。また、低電解質濃度条件で反応を駆動できることから、反応後に廃棄物となる電解質の使用量を削減できるため、本系は環境負荷の小さい電解重合法であると言えます(図1b)。

今回の研究では、脱脂綿を充填した流路中、様々な電解液を用いて流動電位の測定を行ったところ、3V程度の大きな流動電位の発生を見出しました。さらに、流動電位によるピロールなどの導電性高分子の電解重合に成功しました(図1c)。

この無給電電解反応を発展させることで、有機化合物の分子変換や極限環境での電解反応への応用が期待されます。例えば、プラントでの配管や高圧を無給電電解反応に利用したり、電力の供給が難しい深海での電解精錬などに利用できないか、夢を描いています。

図1 今回の研究の概要

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

大きな流動電位を発生させるために流路に脱脂綿を充填させたことです。研究を始めた当初は流動電位をほとんど観測することができませんでしたが、原理の式に立ち返り、圧力項に着目しました。流動電位の大きさは、流路での圧力損失と比例関係にあります(図2a)。そこで私は、流路に充填物を設置することで圧力損失を生じさせることができると考えました。種々の充填物を検討した中で、脱脂綿を用いることで圧力損失が生じ、大きな流動電位の発生を観測できました(図2b)。流路への脱脂綿の充填は、流動電位を発生させる上で重要な役割を果たしているだけでなく、最も苦戦した部分だったため、非常に思い入れがあります。

図2 流路充填物の検討

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

流動電位という界面動電現象を扱う点です。流動電位自体は昔から知られている現象でありますが、学部時代には有機合成を行っていた私にとっては全く新しい概念でした。また、流動電位に関するポジティブな知見が研究室内にほとんどありませんでした。そのため、実験結果に対する考察が非常に難しかったです。そこで、流動電位に関する論文を慣れないながらも読み進めたり、流動電位を利用したゼータ電位計を制作している会社の方に話を伺ったりすることで、理解を深めました。また、流体を扱う点にも苦労しました。幸いにも学部時代に化学工学の授業を受けていたため、当時の授業資料や教科書が考察の大きな助けになりました。

Q4. 将来は化学とどう関わっていきたいですか?

企業研究者として、化学を利用したものづくりを行いたいと考えています。学部時代の卒業研究を通じて、私は化学反応の進行には加温条件を用いるため、莫大なエネルギーが必要なことや、反応に危険な試薬を使用するため、環境負荷が大きいことを実感しました。そして、専門である化学を用いて環境問題の解決に貢献したいと考えるようになりました。そのため、博士課程修了後に化学メーカーに就職し、環境負荷を低減する製品や合成プロセスの開発を行いたいです。そのために、博士課程の3年間を有意義なものにしたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまでお読みいただきありがとうございました。流動電位を利用する電解反応は、無給電で進行可能であることから、本研究を発展させることで持続可能な社会の構築に貢献できると考えています。もしこの記事を見て興味を持たれた方がいましたら、ぜひ論文もご覧になってください。

最後に、研究の遂行にあたり手厚くご指導いただいた稲木先生、Elena先生、現横浜国立大学助教 信田先生ならびに私の研究室生活を支えていただいた稲木研究室のメンバーと両親に深く感謝いたします。そして、このような機会を提供していただいたChem-Stationスタッフのみなさんに感謝申し上げます。

研究者の略歴

名前:岩井 優 (いわい すぐる)

所属(大学・学部・研究室):東京工業大学物質理工学院応用化学系稲木研究室

研究テーマ:流動電位を利用する電解反応系の開発

略歴:

2020年3月 横浜国立大学 理工学部 化学・生命系学科 卒業

2022年3月 東京工業大学 物質理工学院 応用化学系 修士課程修了

2022年4月~現在 東京工業大学 物質理工学院 応用化学系 博士課程在学中

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」⑧
  2. SNSコンテスト企画『集まれ、みんなのラボのDIY!』
  3. MEDCHEM NEWS 31-4号「RNA制御モダリティ」
  4. 「極ワイドギャップ半導体酸化ガリウムの高品質結晶成長」– カリフ…
  5. 硫黄―炭素二重結合の直接ラジカル重合~さまざまなビニルポリマーに…
  6. 化学者のためのエレクトロニクス講座~電解金めっき編~
  7. sp2-カルボカチオンを用いた炭化水素アリール化
  8. ビシナルジハライドテルペノイドの高効率全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 電気化学ことはじめ(1) 何が必要なの??
  2. ガレン・スタッキー Galen D. Stucky
  3. 武田、ビタミン原料事業から完全撤退
  4. 金属ヒドリド水素原子移動(MHAT)を用いた四級炭素構築法
  5. 研究開発分野におけるセキュリティ対策の傾向と、miHubでのセキュリティへの取り組み
  6. 高選択的なアルカンC–H酸化触媒の開発
  7. クレーンケ ピリジン合成 Kröhnke Pyridine Synthesis
  8. 三原色発光するシリコン量子ドットフィルム―太陽光、高温、高湿への高い耐久性は表面構造が鍵―
  9. 図に最適なフォントは何か?
  10. 第24回 化学の楽しさを伝える教育者 – Darren Hamilton教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

第604回のスポットライトリサーチは、東京工業大学 元素戦略MDX研究センターの宮﨑 雅義(みやざぎ…

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP