[スポンサーリンク]

スポットライトリサーチ

オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC」

[スポンサーリンク]

新年第一回目、第241回のスポットライトリサーチは、東北大学大学院生命科学研究科(有本研究室)・高橋 大輝さんにお願いしました。

今回紹介する内容は、我が国が伝統的に強みを持つ研究領域・オートファジーを操作する化学分子を用いて有害物質除去を行うという、新たな創薬戦略に繋がる成果です。筆者(副代表)もかつてケミカルバイオロジー学会にて拝聴させていただいたのですが、コンセプトの革新性に感銘を受けました。今回紹介させていただく機会に恵まれ、嬉しく思います。本成果はMolecular Cell誌 原著論文およびプレスリリースとして公開されています。

“AUTACs: Cargo-Specific Degraders Using Selective Autophagy”
Takahashi, D.; Moriyama, J.; Nakamura, T.; Akaike, T.; Itto-Nakama, K.; Arimoto, H. Molecular Cell, 2019, 76, 797-810. DOI:10.1016/j.molcel.2019.09.009

研究室を主宰されている有本博一 教授から、人物評を下記のとおり頂いています。長年にわたる忍耐的取り組みが本成果に繋がっているわけで、素晴らしい研究ならではの話といえるでしょう。

高橋君は,「生命科学を理解するためには化学を知ることが必要だと思うんです!」といって他大学から進学しました。分子生物学には強いので,こちらでは化学を強化しながら研究しています。AUTACの開発には6年間もかかり,辛抱強く頑張ったと評価しています。他分野の研究者・企業との連携,特許など多くを経験したので,振り返れば有意義な学生生活だったとも言えますね。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

病気の原因となるタンパク質や不良ミトコンドリアを分解する薬「デグレーダー」の研究です(図1)。悪いものを取り除くのですから,発想はいたって単純。今までなかったのを不思議に思うひとも多いかもしれませんね。でも,できなかったんです,これまで。
もう少し説明すると,分解には大隅先生のノーベル賞で有名なオートファジーという仕組みを使います。私たちが発明したデグレーダー分子AUTACは,壊したいものの周囲に「オートファジーを呼んでくる」という機能を持っています。手前味噌ですけど,選択的オートファジーを自在制御する分子というコンセプトでは,世界初の研究になりました。

図1 AUTAC技術の紹介

オートファジーの良いところは,基本的になんでも壊すことができるところ。例えば,ミトコンドリアなどの細胞小器官やタンパク質凝集体,タンパク質以外の分子も分解します。いまのAUTACは,ミトコンドリアとタンパク質分解で効果を実証した段階です。ミトコンドリアは,老化や病気によって機能が低下するので,それを取り除くAUTACは,疾患の治療薬として幅広く注目されています。

Q2. 本研究テーマについて,自分なりに工夫したところ,思い入れがあるところを教えてください。

変な答えになりますけど,オートファジーを使うところです。日本はオートファジー研究では世界の主要拠点のひとつですが,研究会に出ている化学者は私たちぐらいです。工夫というか,大事なのは本当に深く深くオートファジーの世界に潜入したことだと思います。論文のレビュアーだって化学者じゃない場合が多いので。
オートファジーは関与するタンパク質の数が多くて複雑です(>100種が同時に働いています)。教科書にあるようなことが,突然ひっくり返ることもあり得ます。 例えば,オートファジーは,最初は壊す相手を選ばない(選択性がない)って言われていたんです。でも,相手を選んで壊す選択的オートファジーがあることが,少しずつわかってきて。相手を選ぶ過程で「低分子の目印(分解タグ)」が付加されるというのが,私たち独自の仮説。いかにも化学者らしい発想なので,オートファジーの研究会でも,なんとなく信じて貰えてない感じというというか,そういう雰囲気が少しあったように思います。
実は,AUTAC論文の内容で,2019年のオートファジー研究会で若手の賞をいただきました。正直,嬉しかったです。分野の壁を超えて受け入れて貰えたという実感が湧いてきました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

テクニカルなことですが,AUTACがミトコンドリアを本当に分解しているのか、ということを証明する方法に苦労しました。生体分子は何でもそうですが,分解が起これば同時に生合成が起きます。オートファジー機構は非常に複雑で,AUTACによる分解には少し時間がかかります。その間に生合成が進むと,一見すると何も変わらないように見えてしまうことがあるのです。
私たちは,2つの対策をとりました。ひとつは,パルスチェイスアッセイの要領で,ミトコンドリアの初期量と現存量をモニターする系を作りました(図2a)。ミトコンドリア総量が変わらないように見えるケースでも,初期量の減少が検出できます。もうひとつは,ミトコンドリアが分解されるときに酸性環境(リソソーム)に移行することをpH感受性蛍光タンパク質Rosellaで証明することです(図2b)。このRossellaの実験は,指導教員の先生がKeystone会議で仲良くなったギリシャの研究者に協力してもらいました。国際的なネットワークづくりは大事だなと思いました。私自身は,まだまだこれからですけど。

図2(a) ミトコンドリアターンo-ab-を観察するためのパルスチェイス様解析:ミトコンドリアをmito-GFPとMitoTrackerRed(MTR; ミトコンドリア染色試薬)で染色する。MTRは線上除去すればそれ以上染色されないため、実験開始時点のミトコンドリア量を示す。mitoGFP蛍光はDNAで細胞に導入されているため、ミト合成に従って順次ミトコンドリアに入り、常に全ミトコンドリア量を示す。したがって、分解が起これば両蛍光の減少、合成が起こればGFP蛍光だけの増加が見られる。 (b) ミトコンドリアのオートファジー分解を観察するためのmito-Rosellaプローブ:Rosellaタンパク質はpH感受性のプローブとして使われる。低pHに耐性を持つDsRedと感受性のpHluorinという二つの蛍光タンパク質が連結している。ここでもちいたmito-Rosellaはミトコンドリア内膜にRosellaを局在させることでミトコンドリアの酸性化(リソソームへの移行)を検出できる。

Q4. 将来は化学とどう関わっていきたいですか?

私自身は,学部時代は生物系を中心に学んできたこともあり,生命の複雑な生命現象に興味がありました。しかし,そのひとつひとつが化学と関わることを知り,ケミカルバイオロジーの研究室に進学しました。所属研究室は,化学の研究室としては珍しくディープに生命科学を実践することを目指しています。モデル生物の寿命制御機構を探っている脇で,有機合成していたり,カオスな環境です。私は化合物が生物に及ぼす影響や,化合物を使って生命現象を紐解いていくことに強い魅力を感じるようになりました。これからも化学と生物の垣根を取っ払うような大きな仕事ができればと思います。

Q5. 最後に,読者の皆さんにメッセージをお願いします。

最後まで読んでいただきありがとうございます。私たちが開発したAUTACは,まだ成長途上です。皆さんに使ってもらったり,ご意見をいただいたりすることでこれから更に発展し,オートファジー初の創薬につながれば幸いです。

研究者の略歴

名前:高橋 大輝
所属:東北大学大学院生命科学研究科 博士研究員
経歴:2013年 弘前大学農学生命科学部卒業
同年,東北大学大学院生命科学研究科へ進学
2019年 博士(生命科学)取得

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アセトンを用いた芳香環のC–Hトリフルオロメチル化反応
  2. 【ナード研究所】新卒採用情報(2025年卒)
  3. アンモニアを室温以下で分解できる触媒について
  4. ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研…
  5. 冬虫夏草由来の画期的新薬がこん平さんを救う?ーFTY720
  6. 汝ペーハーと読むなかれ
  7. Macユーザに朗報?ChemDrawバージョンアップ
  8. 東大、京大入試の化学を調べてみた(有機編)

注目情報

ピックアップ記事

  1. 2007年秋の褒章
  2. ロピニロールのメディシナルケミストリー -iPS創薬でALS治療に光明-
  3. 第54回天然有機化合物討論会
  4. 偽造ウイスキーをボトルに入れたまま判別する手法が開発される
  5. 疑惑の論文200本発見 米大が盗作探知プログラム開発
  6. これならわかる マススペクトロメトリー
  7. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる
  8. フォン・リヒター反応 von Richter Reaction
  9. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつーの!: 井戸型ポテンシャルと曲率】
  10. 秋の褒章2013-化学

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP