[スポンサーリンク]

スポットライトリサーチ

オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC」

[スポンサーリンク]

新年第一回目、第241回のスポットライトリサーチは、東北大学大学院生命科学研究科(有本研究室)・高橋 大輝さんにお願いしました。

今回紹介する内容は、我が国が伝統的に強みを持つ研究領域・オートファジーを操作する化学分子を用いて有害物質除去を行うという、新たな創薬戦略に繋がる成果です。筆者(副代表)もかつてケミカルバイオロジー学会にて拝聴させていただいたのですが、コンセプトの革新性に感銘を受けました。今回紹介させていただく機会に恵まれ、嬉しく思います。本成果はMolecular Cell誌 原著論文およびプレスリリースとして公開されています。

“AUTACs: Cargo-Specific Degraders Using Selective Autophagy”
Takahashi, D.; Moriyama, J.; Nakamura, T.; Akaike, T.; Itto-Nakama, K.; Arimoto, H. Molecular Cell, 2019, 76, 797-810. DOI:10.1016/j.molcel.2019.09.009

研究室を主宰されている有本博一 教授から、人物評を下記のとおり頂いています。長年にわたる忍耐的取り組みが本成果に繋がっているわけで、素晴らしい研究ならではの話といえるでしょう。

高橋君は,「生命科学を理解するためには化学を知ることが必要だと思うんです!」といって他大学から進学しました。分子生物学には強いので,こちらでは化学を強化しながら研究しています。AUTACの開発には6年間もかかり,辛抱強く頑張ったと評価しています。他分野の研究者・企業との連携,特許など多くを経験したので,振り返れば有意義な学生生活だったとも言えますね。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

病気の原因となるタンパク質や不良ミトコンドリアを分解する薬「デグレーダー」の研究です(図1)。悪いものを取り除くのですから,発想はいたって単純。今までなかったのを不思議に思うひとも多いかもしれませんね。でも,できなかったんです,これまで。
もう少し説明すると,分解には大隅先生のノーベル賞で有名なオートファジーという仕組みを使います。私たちが発明したデグレーダー分子AUTACは,壊したいものの周囲に「オートファジーを呼んでくる」という機能を持っています。手前味噌ですけど,選択的オートファジーを自在制御する分子というコンセプトでは,世界初の研究になりました。

図1 AUTAC技術の紹介

オートファジーの良いところは,基本的になんでも壊すことができるところ。例えば,ミトコンドリアなどの細胞小器官やタンパク質凝集体,タンパク質以外の分子も分解します。いまのAUTACは,ミトコンドリアとタンパク質分解で効果を実証した段階です。ミトコンドリアは,老化や病気によって機能が低下するので,それを取り除くAUTACは,疾患の治療薬として幅広く注目されています。

Q2. 本研究テーマについて,自分なりに工夫したところ,思い入れがあるところを教えてください。

変な答えになりますけど,オートファジーを使うところです。日本はオートファジー研究では世界の主要拠点のひとつですが,研究会に出ている化学者は私たちぐらいです。工夫というか,大事なのは本当に深く深くオートファジーの世界に潜入したことだと思います。論文のレビュアーだって化学者じゃない場合が多いので。
オートファジーは関与するタンパク質の数が多くて複雑です(>100種が同時に働いています)。教科書にあるようなことが,突然ひっくり返ることもあり得ます。 例えば,オートファジーは,最初は壊す相手を選ばない(選択性がない)って言われていたんです。でも,相手を選んで壊す選択的オートファジーがあることが,少しずつわかってきて。相手を選ぶ過程で「低分子の目印(分解タグ)」が付加されるというのが,私たち独自の仮説。いかにも化学者らしい発想なので,オートファジーの研究会でも,なんとなく信じて貰えてない感じというというか,そういう雰囲気が少しあったように思います。
実は,AUTAC論文の内容で,2019年のオートファジー研究会で若手の賞をいただきました。正直,嬉しかったです。分野の壁を超えて受け入れて貰えたという実感が湧いてきました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

テクニカルなことですが,AUTACがミトコンドリアを本当に分解しているのか、ということを証明する方法に苦労しました。生体分子は何でもそうですが,分解が起これば同時に生合成が起きます。オートファジー機構は非常に複雑で,AUTACによる分解には少し時間がかかります。その間に生合成が進むと,一見すると何も変わらないように見えてしまうことがあるのです。
私たちは,2つの対策をとりました。ひとつは,パルスチェイスアッセイの要領で,ミトコンドリアの初期量と現存量をモニターする系を作りました(図2a)。ミトコンドリア総量が変わらないように見えるケースでも,初期量の減少が検出できます。もうひとつは,ミトコンドリアが分解されるときに酸性環境(リソソーム)に移行することをpH感受性蛍光タンパク質Rosellaで証明することです(図2b)。このRossellaの実験は,指導教員の先生がKeystone会議で仲良くなったギリシャの研究者に協力してもらいました。国際的なネットワークづくりは大事だなと思いました。私自身は,まだまだこれからですけど。

図2(a) ミトコンドリアターンo-ab-を観察するためのパルスチェイス様解析:ミトコンドリアをmito-GFPとMitoTrackerRed(MTR; ミトコンドリア染色試薬)で染色する。MTRは線上除去すればそれ以上染色されないため、実験開始時点のミトコンドリア量を示す。mitoGFP蛍光はDNAで細胞に導入されているため、ミト合成に従って順次ミトコンドリアに入り、常に全ミトコンドリア量を示す。したがって、分解が起これば両蛍光の減少、合成が起こればGFP蛍光だけの増加が見られる。 (b) ミトコンドリアのオートファジー分解を観察するためのmito-Rosellaプローブ:Rosellaタンパク質はpH感受性のプローブとして使われる。低pHに耐性を持つDsRedと感受性のpHluorinという二つの蛍光タンパク質が連結している。ここでもちいたmito-Rosellaはミトコンドリア内膜にRosellaを局在させることでミトコンドリアの酸性化(リソソームへの移行)を検出できる。

Q4. 将来は化学とどう関わっていきたいですか?

私自身は,学部時代は生物系を中心に学んできたこともあり,生命の複雑な生命現象に興味がありました。しかし,そのひとつひとつが化学と関わることを知り,ケミカルバイオロジーの研究室に進学しました。所属研究室は,化学の研究室としては珍しくディープに生命科学を実践することを目指しています。モデル生物の寿命制御機構を探っている脇で,有機合成していたり,カオスな環境です。私は化合物が生物に及ぼす影響や,化合物を使って生命現象を紐解いていくことに強い魅力を感じるようになりました。これからも化学と生物の垣根を取っ払うような大きな仕事ができればと思います。

Q5. 最後に,読者の皆さんにメッセージをお願いします。

最後まで読んでいただきありがとうございます。私たちが開発したAUTACは,まだ成長途上です。皆さんに使ってもらったり,ご意見をいただいたりすることでこれから更に発展し,オートファジー初の創薬につながれば幸いです。

研究者の略歴

名前:高橋 大輝
所属:東北大学大学院生命科学研究科 博士研究員
経歴:2013年 弘前大学農学生命科学部卒業
同年,東北大学大学院生命科学研究科へ進学
2019年 博士(生命科学)取得

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Ns基とNos基とDNs基
  2. Brønsted酸触媒とヒドロシランによるシラFriedel-C…
  3. 【第11回Vシンポ特別企画】講師紹介①:東原 知哉 先生
  4. 狙いを定めて、炭素-フッ素結合の変換!~光触媒とスズの協働作用~…
  5. ホウ素でがんをやっつける!
  6. L-RAD:未活用の研究アイデアの有効利用に
  7. 歴史の長いマイクロウェーブ合成装置「Biotage® Initi…
  8. 沖縄科学技術大学院大学(OIST) 教員公募

注目情報

ピックアップ記事

  1. 糖鎖を直接連結し天然物をつくる
  2. 最近の有機化学注目論文1
  3. 自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間
  4. 日本精化ってどんな会社?
  5. 従来製品の100 倍以上の光耐久性を持つペンタセン誘導体の開発に成功
  6. ティフェノー・デミヤノフ転位 Tiffeneau-Demjanov Rearrangement
  7. 膨潤が引き起こす架橋高分子のメカノクロミズム
  8. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発
  9. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話
  10. Reaxys Prize 2017ファイナリスト発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP