[スポンサーリンク]

スポットライトリサーチ

オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC」

[スポンサーリンク]

新年第一回目、第241回のスポットライトリサーチは、東北大学大学院生命科学研究科(有本研究室)・高橋 大輝さんにお願いしました。

今回紹介する内容は、我が国が伝統的に強みを持つ研究領域・オートファジーを操作する化学分子を用いて有害物質除去を行うという、新たな創薬戦略に繋がる成果です。筆者(副代表)もかつてケミカルバイオロジー学会にて拝聴させていただいたのですが、コンセプトの革新性に感銘を受けました。今回紹介させていただく機会に恵まれ、嬉しく思います。本成果はMolecular Cell誌 原著論文およびプレスリリースとして公開されています。

“AUTACs: Cargo-Specific Degraders Using Selective Autophagy”
Takahashi, D.; Moriyama, J.; Nakamura, T.; Akaike, T.; Itto-Nakama, K.; Arimoto, H. Molecular Cell, 2019, 76, 797-810. DOI:10.1016/j.molcel.2019.09.009

研究室を主宰されている有本博一 教授から、人物評を下記のとおり頂いています。長年にわたる忍耐的取り組みが本成果に繋がっているわけで、素晴らしい研究ならではの話といえるでしょう。

高橋君は,「生命科学を理解するためには化学を知ることが必要だと思うんです!」といって他大学から進学しました。分子生物学には強いので,こちらでは化学を強化しながら研究しています。AUTACの開発には6年間もかかり,辛抱強く頑張ったと評価しています。他分野の研究者・企業との連携,特許など多くを経験したので,振り返れば有意義な学生生活だったとも言えますね。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

病気の原因となるタンパク質や不良ミトコンドリアを分解する薬「デグレーダー」の研究です(図1)。悪いものを取り除くのですから,発想はいたって単純。今までなかったのを不思議に思うひとも多いかもしれませんね。でも,できなかったんです,これまで。
もう少し説明すると,分解には大隅先生のノーベル賞で有名なオートファジーという仕組みを使います。私たちが発明したデグレーダー分子AUTACは,壊したいものの周囲に「オートファジーを呼んでくる」という機能を持っています。手前味噌ですけど,選択的オートファジーを自在制御する分子というコンセプトでは,世界初の研究になりました。

図1 AUTAC技術の紹介

オートファジーの良いところは,基本的になんでも壊すことができるところ。例えば,ミトコンドリアなどの細胞小器官やタンパク質凝集体,タンパク質以外の分子も分解します。いまのAUTACは,ミトコンドリアとタンパク質分解で効果を実証した段階です。ミトコンドリアは,老化や病気によって機能が低下するので,それを取り除くAUTACは,疾患の治療薬として幅広く注目されています。

Q2. 本研究テーマについて,自分なりに工夫したところ,思い入れがあるところを教えてください。

変な答えになりますけど,オートファジーを使うところです。日本はオートファジー研究では世界の主要拠点のひとつですが,研究会に出ている化学者は私たちぐらいです。工夫というか,大事なのは本当に深く深くオートファジーの世界に潜入したことだと思います。論文のレビュアーだって化学者じゃない場合が多いので。
オートファジーは関与するタンパク質の数が多くて複雑です(>100種が同時に働いています)。教科書にあるようなことが,突然ひっくり返ることもあり得ます。 例えば,オートファジーは,最初は壊す相手を選ばない(選択性がない)って言われていたんです。でも,相手を選んで壊す選択的オートファジーがあることが,少しずつわかってきて。相手を選ぶ過程で「低分子の目印(分解タグ)」が付加されるというのが,私たち独自の仮説。いかにも化学者らしい発想なので,オートファジーの研究会でも,なんとなく信じて貰えてない感じというというか,そういう雰囲気が少しあったように思います。
実は,AUTAC論文の内容で,2019年のオートファジー研究会で若手の賞をいただきました。正直,嬉しかったです。分野の壁を超えて受け入れて貰えたという実感が湧いてきました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

テクニカルなことですが,AUTACがミトコンドリアを本当に分解しているのか、ということを証明する方法に苦労しました。生体分子は何でもそうですが,分解が起これば同時に生合成が起きます。オートファジー機構は非常に複雑で,AUTACによる分解には少し時間がかかります。その間に生合成が進むと,一見すると何も変わらないように見えてしまうことがあるのです。
私たちは,2つの対策をとりました。ひとつは,パルスチェイスアッセイの要領で,ミトコンドリアの初期量と現存量をモニターする系を作りました(図2a)。ミトコンドリア総量が変わらないように見えるケースでも,初期量の減少が検出できます。もうひとつは,ミトコンドリアが分解されるときに酸性環境(リソソーム)に移行することをpH感受性蛍光タンパク質Rosellaで証明することです(図2b)。このRossellaの実験は,指導教員の先生がKeystone会議で仲良くなったギリシャの研究者に協力してもらいました。国際的なネットワークづくりは大事だなと思いました。私自身は,まだまだこれからですけど。

図2(a) ミトコンドリアターンo-ab-を観察するためのパルスチェイス様解析:ミトコンドリアをmito-GFPとMitoTrackerRed(MTR; ミトコンドリア染色試薬)で染色する。MTRは線上除去すればそれ以上染色されないため、実験開始時点のミトコンドリア量を示す。mitoGFP蛍光はDNAで細胞に導入されているため、ミト合成に従って順次ミトコンドリアに入り、常に全ミトコンドリア量を示す。したがって、分解が起これば両蛍光の減少、合成が起こればGFP蛍光だけの増加が見られる。 (b) ミトコンドリアのオートファジー分解を観察するためのmito-Rosellaプローブ:Rosellaタンパク質はpH感受性のプローブとして使われる。低pHに耐性を持つDsRedと感受性のpHluorinという二つの蛍光タンパク質が連結している。ここでもちいたmito-Rosellaはミトコンドリア内膜にRosellaを局在させることでミトコンドリアの酸性化(リソソームへの移行)を検出できる。

Q4. 将来は化学とどう関わっていきたいですか?

私自身は,学部時代は生物系を中心に学んできたこともあり,生命の複雑な生命現象に興味がありました。しかし,そのひとつひとつが化学と関わることを知り,ケミカルバイオロジーの研究室に進学しました。所属研究室は,化学の研究室としては珍しくディープに生命科学を実践することを目指しています。モデル生物の寿命制御機構を探っている脇で,有機合成していたり,カオスな環境です。私は化合物が生物に及ぼす影響や,化合物を使って生命現象を紐解いていくことに強い魅力を感じるようになりました。これからも化学と生物の垣根を取っ払うような大きな仕事ができればと思います。

Q5. 最後に,読者の皆さんにメッセージをお願いします。

最後まで読んでいただきありがとうございます。私たちが開発したAUTACは,まだ成長途上です。皆さんに使ってもらったり,ご意見をいただいたりすることでこれから更に発展し,オートファジー初の創薬につながれば幸いです。

研究者の略歴

名前:高橋 大輝
所属:東北大学大学院生命科学研究科 博士研究員
経歴:2013年 弘前大学農学生命科学部卒業
同年,東北大学大学院生命科学研究科へ進学
2019年 博士(生命科学)取得

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. いろんなカタチの撹拌子を試してみた
  2. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線…
  3. 50年来の謎反応を解明せよ
  4. 酸素を使った触媒的Dess–Martin型酸化
  5. 蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH
  6. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  7. リチウムイオン電池のはなし~1~
  8. 創発型研究のススメー日本化学会「化学と工業:論説」より

注目情報

ピックアップ記事

  1. シランカップリング剤の反応、効果と応用【終了】
  2. 27万種類のビルディングブロックが購入できる!?
  3. 調光機能付きコンタクトレンズが登場!光に合わせてレンズの色が変化し、目に入る光の量を自動で調節
  4. パール・クノール フラン合成 Paal-Knorr Furan Synthesis
  5. 直線的な分子設計に革新、テトラフルオロスルファニル化合物―特許性の高い化学材料としての活躍に期待―
  6. リアル「ブレイキング・バッド」!薬物製造元教授を逮捕 中国
  7. 大日本製薬と住友製薬が来年10月合併・国内6位に
  8. N-ヘテロ環状カルベン / N-Heterocyclic Carbene (NHC)
  9. 光学活性有機ホウ素化合物のカップリング反応
  10. 幾何学の定理を活用したものづくり

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP