[スポンサーリンク]

O

有機リチウム試薬 Organolithium Reagents

[スポンサーリンク]

 

概要

有機金属試薬の大まかな反応性は炭素-金属結合の分極度合いで決まり、炭素-リチウム結合は最も大きな分極(イオン結合性)を示す。このため有機リチウム化合物は、有機金属試薬の中では最も強力な性質を示し、Grignard試薬、有機亜鉛試薬などよりも反応性が高い。空気・水には不安定であり、反応時には激しく発熱する。このため、不活性ガス雰囲気下・脱水溶媒・低温条件で反応を行う必要がある。金属交換用試薬、求核剤もしくは強塩基として用いることが一般的。

基本文献

 

反応機構

リチウム-ハロゲン交換反応は、電子移動(SET)機構、もしくはハロゲンへの求核付加-脱離機構で進行する。(参考:J. Organomet. Chem. 1988, 352, 1.)
t-BuLiを用いるハロゲン-リチウム交換反応の場合には、ハロゲンに対して二当量の試薬が必要。(リチオ化後に生じるt-ブチルハライドとt-BuLiが反応して消費されるため)
organolithium_6.gif

 

反応例

※溶液中では会合状態(オリゴマー)として存在している。配位性添加剤を加え、会合を解離させてやると反応性を向上させることができる。N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)ヘキサメチルホスホラミド(HMPA)ジメチルプロピレンウレア(DMPU)はその目的で頻用される試薬の例である。
organolithium_5.gif
※有機リチウムは求核剤および塩基としての両性質を兼ね備え、反応性の高さゆえの副反応を起こしやすい。 塩基目的の使用においては、かさ高い二級アミンをリチオ化したリチウムアミド試薬を用いることが多い。代表的な試薬としてはLDA(Lithium diisopropylamide)、LiTMP(Lithium 2,2,6,6-tetramethylpiperidide)、LHMDS(Lithium hexamethyldisilazide)などが挙げられる。
organolithium_4.gif
※他方、求核剤用途では、銅アート錯体(R2CuLi)の形にして使用すれば、塩基性を抑えつつ求核付加・置換が行える。リチウム試薬はハード性が高く、α,β不飽和カルボニル化合物を基質とした場合、1,2-付加が1,4-付加に優先する。銅アート錯体を用いれば1,4-選択的に進行させることが可能。
organocuprate_michael_1.gif
nBuLi-KOtBuのコンビネーションはSchlosser-Lochmann塩基とよばれ、超強塩基として働く。たとえば炭化水素のアリル位脱プロトン化などに用いることができる。[1] 光学活性アリルボランの合成などにおいて用いられることが多い。
Roushらの報告[2]を下記に示す。
organolithium_9.gif
(-)-Sparteineを配位性添加剤として加えると、エナンチオ選択的脱プロトン化が行える。以下に例を示す。[3] organolithium_3.gif

実験手順

 

実験のコツ・テクニック

※よく用いられ市販もされている代表的な試薬としては、MeLi、PhLi、n-BuLi、sec-BuLi、t-BuLiなどが挙げられる。
organolithium_2.gif

※市販のリチウム試薬はSure-sealedな試薬瓶に保存されてはいるが、シリンジ針を2~3回刺すと穴が開いて密閉性が格段に低下してしまう。テフロンシールやパラフィルムを何重かに巻いて保存する。より厳密に、かつ長期間保存したい場合はSchlenk管に移し替えて保存すると良い。

※適宜時期をみて濃度を滴定(titration)しておくと良い。簡便かつ信頼性の高い方法としては、ジフェニル酢酸法[4]2,2′-ビピリジル法[5]が知られている。

※ヘキサンなど炭化水素系の溶媒中では一般に安定であるが、エーテル系溶媒中ではβ脱離反応を介し徐々に分解することが知られている( たとえばn-BuLiのTHF中0℃における半減期は24時間)。分解しやすさはDME>THF>ジエチルエーテルの順。

organolithium_8.gif
t-BuLiは反応性が大変高く、頻繁に発火事故を引き起こす。使用には十分注意し、大スケール反応の場合には、必ず消火器具を手元に備えておくこと。

 

参考文献

[1] Schlosser, M. Pure Appl. Chem. 198811, 1627.

[2] Roush, W. R.; Ando, K.; Powers, D. B.; Halterman, R. L.; Palkowitz, A. D. Tetrahedron Lett. 1988, 29, 5579. doi:10.1016/S0040-4039(00)80816-3

[3] Kerrik, S. T.; Beak, P. J. Am. Chem. Soc. 1991113, 9708. DOI: 10.1021/ja00025a066

[4] Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 197641, 1879. DOI: 10.1021/jo00872a047

[5] Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 19679, 165. doi:10.1016/S0022-328X(00)92418-5

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. ニーメントウスキー キノリン/キナゾリン合成 Niementow…
  2. 2,2,2-トリクロロエトキシカルボニル保護基 Troc Pro…
  3. ヒドロシリル化反応 Hydrosilylation
  4. スナップ試薬 SnAP Reagent
  5. スルホニル保護基 Sulfonyl Protective Gro…
  6. PCC/PDC酸化 PCC/PDC Oxidation
  7. ジンケ アルデヒド Zincke Aldehyde
  8. 菅沢反応 Sugasawa Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. デュポン子会社が植物性化学原料の出荷を開始
  2. 徒然なるままにセンター試験を解いてみた(2018年版)
  3. ケムステ主催バーチャルシンポジウム「最先端有機化学」を開催します!
  4. マツタケオール mushroom alcohol
  5. 炭素原子のまわりにベンゼン環をはためかせる
  6. 第113回―「量子コンピューティング・人工知能・実験自動化で材料開発を革新する」Alán Aspuru-Guzik教授
  7. ヘリウム新供給プロジェクト、米エアプロダクツ&ケミカルズ社
  8. 木曽 良明 Yoshiaki Kiso
  9. 有機化合物のスペクトルによる同定法―MS,IR,NMRの併用 (第7版)
  10. 韓国チームがiPS細胞の作製効率高める化合物を発見

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
« 8月   10月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

化学知識の源、化学同人と東京化学同人

化学の専門家なら化学同人と東京化学同人の教科書や参考書を必ず一冊は購入したことがあると思います。この…

天才プログラマー タンメイが教えるJulia超入門

概要使いやすさと実行速度を兼ね備えた注目のプログラミング言語Julia.世界の天才プ…

【Spiber】新卒・中途採用情報

【会社が求める人物像】私たちの理念や取り組みに共感し、「人を大切にする」とい…

飲むノミ・マダニ除虫薬のはなし

Tshozoです。先日TVを眺めていて「かわいいワンちゃんの体をダニとノミから守るためにお薬を飲ませ…

MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成

有機合成化学協会が発行する有機合成化学協会誌、2022年5月号がオンライン公開されました。連…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

開催日:2022/05/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP