[スポンサーリンク]

O

有機リチウム試薬 Organolithium Reagents

[スポンサーリンク]

 

概要

有機金属試薬の大まかな反応性は炭素-金属結合の分極度合いで決まり、炭素-リチウム結合は最も大きな分極(イオン結合性)を示す。このため有機リチウム化合物は、有機金属試薬の中では最も強力な性質を示し、Grignard試薬、有機亜鉛試薬などよりも反応性が高い。空気・水には不安定であり、反応時には激しく発熱する。このため、不活性ガス雰囲気下・脱水溶媒・低温条件で反応を行う必要がある。金属交換用試薬、求核剤もしくは強塩基として用いることが一般的。

基本文献

 

反応機構

リチウム-ハロゲン交換反応は、電子移動(SET)機構、もしくはハロゲンへの求核付加-脱離機構で進行する。(参考:J. Organomet. Chem. 1988, 352, 1.)
t-BuLiを用いるハロゲン-リチウム交換反応の場合には、ハロゲンに対して二当量の試薬が必要。(リチオ化後に生じるt-ブチルハライドとt-BuLiが反応して消費されるため)
organolithium_6.gif

 

反応例

※溶液中では会合状態(オリゴマー)として存在している。配位性添加剤を加え、会合を解離させてやると反応性を向上させることができる。N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)ヘキサメチルホスホラミド(HMPA)ジメチルプロピレンウレア(DMPU)はその目的で頻用される試薬の例である。
organolithium_5.gif
※有機リチウムは求核剤および塩基としての両性質を兼ね備え、反応性の高さゆえの副反応を起こしやすい。 塩基目的の使用においては、かさ高い二級アミンをリチオ化したリチウムアミド試薬を用いることが多い。代表的な試薬としてはLDA(Lithium diisopropylamide)、LiTMP(Lithium 2,2,6,6-tetramethylpiperidide)、LHMDS(Lithium hexamethyldisilazide)などが挙げられる。
organolithium_4.gif
※他方、求核剤用途では、銅アート錯体(R2CuLi)の形にして使用すれば、塩基性を抑えつつ求核付加・置換が行える。リチウム試薬はハード性が高く、α,β不飽和カルボニル化合物を基質とした場合、1,2-付加が1,4-付加に優先する。銅アート錯体を用いれば1,4-選択的に進行させることが可能。
organocuprate_michael_1.gif
nBuLi-KOtBuのコンビネーションはSchlosser-Lochmann塩基とよばれ、超強塩基として働く。たとえば炭化水素のアリル位脱プロトン化などに用いることができる。[1] 光学活性アリルボランの合成などにおいて用いられることが多い。
Roushらの報告[2]を下記に示す。
organolithium_9.gif
(-)-Sparteineを配位性添加剤として加えると、エナンチオ選択的脱プロトン化が行える。以下に例を示す。[3] organolithium_3.gif

実験手順

 

実験のコツ・テクニック

※よく用いられ市販もされている代表的な試薬としては、MeLi、PhLi、n-BuLi、sec-BuLi、t-BuLiなどが挙げられる。
organolithium_2.gif

※市販のリチウム試薬はSure-sealedな試薬瓶に保存されてはいるが、シリンジ針を2~3回刺すと穴が開いて密閉性が格段に低下してしまう。テフロンシールやパラフィルムを何重かに巻いて保存する。より厳密に、かつ長期間保存したい場合はSchlenk管に移し替えて保存すると良い。

※適宜時期をみて濃度を滴定(titration)しておくと良い。簡便かつ信頼性の高い方法としては、ジフェニル酢酸法[4]2,2′-ビピリジル法[5]が知られている。

※ヘキサンなど炭化水素系の溶媒中では一般に安定であるが、エーテル系溶媒中ではβ脱離反応を介し徐々に分解することが知られている( たとえばn-BuLiのTHF中0℃における半減期は24時間)。分解しやすさはDME>THF>ジエチルエーテルの順。

organolithium_8.gif
t-BuLiは反応性が大変高く、頻繁に発火事故を引き起こす。使用には十分注意し、大スケール反応の場合には、必ず消火器具を手元に備えておくこと。

 

参考文献

[1] Schlosser, M. Pure Appl. Chem. 198811, 1627.

[2] Roush, W. R.; Ando, K.; Powers, D. B.; Halterman, R. L.; Palkowitz, A. D. Tetrahedron Lett. 1988, 29, 5579. doi:10.1016/S0040-4039(00)80816-3

[3] Kerrik, S. T.; Beak, P. J. Am. Chem. Soc. 1991113, 9708. DOI: 10.1021/ja00025a066

[4] Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 197641, 1879. DOI: 10.1021/jo00872a047

[5] Watson, S. C.; Eastham, J. F. J. Organomet. Chem. 19679, 165. doi:10.1016/S0022-328X(00)92418-5

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 H…
  2. マクマリーカップリング McMurry Coupling
  3. ケック ラジカルアリル化反応 Keck Radicallic A…
  4. フェントン反応 Fenton Reaction
  5. フリードレンダー キノリン合成 Friedlander Quin…
  6. ジオトロピー転位 dyotropic rearrangement…
  7. ベティ反応 Betti Reaction
  8. N-オキシドの合成 Synthesis of N-oxide

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. スクラウプ キノリン合成 Skraup Quinoline Synthesis
  2. CRISPR(クリスパー)
  3. 三菱化学:子会社と持ち株会社設立 敵対的買収を防ぐ狙い
  4. 光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応
  5. アンモニアの安全性あれこれ
  6. エッフェル塔
  7. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  8. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  9. 女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!
  10. コラボリー/Groups(グループ):サイエンスミートアップを支援

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

イグノーベル賞2020が発表 ただし化学賞は無し!

「人々を笑わせ、そして考えさせてくれる業績」に対して贈られるノーベル賞のパロディである「イグノーベル…

電子実験ノートSignals Notebookを紹介します ②

前回に引き続き(間がだいぶ空いてしまいましたが、、、)Signals Notebookの使い…

化学者のためのエレクトロニクス講座~有機半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

Chem-Station Twitter

PAGE TOP