[スポンサーリンク]

元素

炭素 Carbon -生物の基本骨格、多様な同素体

[スポンサーリンク]

 

 炭素は、生物、食べ物など有機化合物の基本元素です。炭素にはいくつかの同素体があり、それぞれが多くの分野で活躍しています。近年注目されているナノテクノロジーの材料であるカーボンナノチューブ、フラーレンも炭素の同素体です。

炭素の基本物性データ

分類 非金属
原子番号・原子量 (12.0107)
電子配置 2s22p2
密度 3513kg/m(ダイヤモンド)
融点  3550℃
沸点 4800℃ (ダイヤモンド)
硬度 0.5 (黒鉛)、10.0 (ダイヤモンド)
色・形状 黒(黒鉛)、無色(ダイヤモンド)、固体
存在度 地球 480ppm、宇宙1.01✕107
クラーク数 0.08%(14位)
発見者 −−−
主な同位体 2C(98.93%), 13C(1.07%), 14C (β、5.730✕103年)
用途例 装飾品、研磨剤(ダイヤモンド)、ゴルフクラブシャフト(炭素線維)、カーボンブラック、活性炭、化石燃料、有機化合物の骨格、プラスチック
前後の元素 ホウ素炭素窒素

ゴルフクラブに炭素を使うー炭素繊維

炭素繊維は、名前の通りほとんど炭素だけからできている繊維です。

炭素繊維とは、衣料の原料としてお馴染みのアクリル樹脂や、石油、石炭からとれるピッチ*などの有機物を線維化して、その後、特殊な熱処理工程を経てつくられる。「微細な黒鉛結晶構造を持つ繊維状の炭素物質」です。金属に比べても軽量で強度が高いことから、ゴルフクラブのシャフトやテニスラケット、航空機のエンジンカバー、オートバイのブレーキマフラーなど、金属の代わりとして用いられています。(関連記事:炭素線維は鉄とアルミに勝るか?Part I Part II

2016-02-06_14-12-09

 

炭素繊維は低温から何度も蒸し焼きにされ、そのたびに化学構造も変わっています。アクリル樹脂(ポリアクリロニトリル)を200-300℃で加熱すると、耐炎糸となり、1000-2000℃で加熱されると炭化糸となります。さらに2000-3000℃で加熱されることにより、炭素だけの線維黒鉛化糸ができあがり、表面処理を行うことで炭素樹脂として出荷されます。

(画像出典:トレカ、東レ)

(画像出典:トレカ、東レ)

*ピッチ:石炭、木材から得られたタールや石油の熱分解によって得られた残油などを蒸留して作られる。常温では固体の炭素質物質のこと。

 

世界一硬い鉱物、ダイヤモンド

言わずと知れた最も硬く、宝石としても有名なダイヤモンドは炭素の同素体です。その硬さの理由は、炭素原子間がすべて共有結合しているためです。グラファイト(黒鉛)も炭素の同素体ですが、ダイヤモンドよりも軟らかくなっています。

グラファイトは層状の構造をとっていて、層内では共有結合をしていますが、層間ではファンデルワールス結合をしていて、共有結合より弱いからです。工業的には研磨剤や採掘用のダイヤモンドヘッドとして用いられています。

2016-02-06_14-30-11

 

最も小さいサッカーボール?フラーレンC60

フラーレン(Fulluerene)はグラファイト(黒鉛)、ダイヤモンドに次ぐ第3の炭素の総称です(現在では多くの炭素の同素体が知られています)。

フラーレンを構成する原子は黒鉛やダイヤモンド中の炭素と同じ種類ですが、60個以上の炭素原子が強く結合して、球状あるいはチューブ状に閉じたネットワーク構造を形成しています。特に、60個の炭素からなっているフラーレンC60は、その形状が建築家バックミンスター・フラー(Richard Buckminster Fuller)の作ったドームににていることからバックミンスターフラーレンともよばれています。

C60の発見者である、米国フロリダ州立大学のクロトー、米国ライス大学のスモーリー、カールらには、1996年のノーベル化学賞が与えられています。

実は、彼らと同時期に米国エクソン社(現エクソン・モービル社)の研究人も同じような実験を行っていたのですが、フラーレンの存在に気づかなかったようです。最近はフラーレンに対するさまざまな化学修飾により、機能性ナノ材料としての研究が多数行われています。

 

日本人がみつけたカーボンナノチューブ

1991年、NEC基礎研究所の飯島澄男氏は、フラーレンの生成作業中に、アーク放電の陰極堆積物の中からカーボンナノチューブを発見しました。

1枚の黒鉛シートを丸めた筒をいくつも重ねた構造で、直径が数十ナノメートル*(nm)で長さが数マイクロメートル*(μm)のまっすぐな円筒状であったことから、そう名付けられました。現在、フラットパネルディスプレイの電界電子放出源や、走査型プローブ顕微鏡の探針、各種ガスの吸着材料として、さまざまな産業分野で実用化が期待されています。

 

シンプルイズベスト?グラフェン

2004年に英マンチェスター大のアンドレ・ゲイム教授とコンスタンチン・ノボセロフ研究フェローらはグラファイトを力ずくで引き剥がした破片から炭素シート「グラフェン」を作り出しました。その方法はとっても簡単。セロハンテープにグラファイトの薄片を貼り付け、テープの粘着面で薄片を挟むように折り、再びテープを引き剥がす。これを繰り返すことによって薄片を剥がし、どんどん薄くしていくことで、非常に薄い原子1つ分の厚さの炭素素材を、グラフェンをはぎ取ることに成功したのです。

グラフェンはシリコンの100倍の電気伝導率があり、鋼鉄の200倍の強度があるとされています。このシンプルな材料を発見した発見者に、2010年のノーベル物理学賞が与えられています。

 

2016-02-06_15-04-07

 

炭素に関するケムステ関連記事

 

関連動画

  • グラフェンの作り方

  • フラーレンについて

  • 炭素材料をつくる

 

関連書籍

 

The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 祝100周年!ー同位体ー
  2. 周期表の形はこれでいいのか? –その 1: H と He の位置…
  3. ネオ元素周期表
  4. リチウム Lithium -リチウム電池から医薬品まで
  5. 希少金属
  6. アルミニウム Aluminium 最も多い金属元素であり、一円玉…
  7. ペッカ・ピューッコ Pekka Pyykkö
  8. 元素紀行

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ベンゼンの直接アルキル化
  2. ベンジル酸転位 Benzilic Acid Rearrangement
  3. なぜクロスカップリングは日本で発展したのか?
  4. パール・クノール チオフェン合成 Paal-Knorr Thiophene Synthesis
  5. Retraction watch リトラクション・ウオッチ
  6. ガレン・スタッキー Galen D. Stucky
  7. 細胞を模倣したコンピューター制御可能なリアクター
  8. グリーンケミストリー Green Chemistry
  9. マクドナルドなど9社を提訴、発がん性物質の警告表示求め=カリフォルニア州
  10. 凸版印刷、有機ELパネル開発

関連商品

注目情報

注目情報

最新記事

金ナノクラスター表面の自己組織化単分子膜を利用したテトラセンの高効率一重項分裂とエネルギー変換機能

第231回のスポットライトリサーチは、慶應義塾大学 羽曾部研究室 で専任講師を務められている酒井 隼…

ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバルヘルスに貢献する天然物化学の新潮流 ~

お申込み・詳細はこちら開催日時2019年12月10日(火)13:00~17:30(開場 …

微小な前立腺がんを迅速・高感度に蛍光検出する

第231回のスポットライトリサーチは、河谷稔さんにお願い致しました。河谷さんが研究を実施され…

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

Chem-Station Twitter

PAGE TOP