[スポンサーリンク]

化学者のつぶやき

環拡大で八員環をバッチリ攻略! pleuromutilinの全合成

[スポンサーリンク]

グラム陽性菌の抗生物質であるpleuromutilinの全合成が報告された。環拡大反応を駆使し複雑な三環式骨格を構築したのち、巧みな不斉官能基化により16工程で合成を達成した。

pleuromutilinの合成

Pleuromutilin(1)はClitopilus属の担子菌から単離された抗生物質である(図 1A)[1]。リボソームのペプチド転移酵素と結合しタンパク質の合成を阻害する特異な作用機序のため、1やその誘導体の医薬品研究は盛んである。誘導体のretapamutilin(2)は皮膚感染症の治療薬、lefamulin(3)は市中肺炎の抗生物質であり、これらはいずれもC14位のグリコール酸の変換によって1から容易に合成できる[2]。一方で、C14位修飾体以外の類縁体はほとんど合成されておらず[3]、合成研究で得られる知見は新たな医薬品の発見に貢献すると期待される。

多くの不斉炭素からなる複雑な三環式骨格をもつ1は、合成標的としても注目を集める。1982年にGibbonsらが初めて全合成(31工程)を成し遂げた後、Boeckman(1989年, 27工程)やProcter(2013年, 34工程)らも全合成を報告した(Procterらは初の不斉全合成)。いずれも八員環構築が鍵となるが、骨格構築とその後の官能基変換に工程数を要した[4]。最近ではHerzon(2017年, 20工程)やReisman(2018年, 18工程)らが収束的な不斉全合成を報告した[5]。Herzonらは、5-6縮環化合物4(AB環)に対しC11, C12, C13位炭素をもつ中間体を合成終盤に導入し、Ni/NHC触媒を利用した還元的環化により、八員環(C環)を形成した(図 1B)。一方Reismanらは合成終盤の八員環構築に際し、生成物の酸化段階が1と一致する環化前駆体の設計と反応条件の精査により、短工程化を実現した(図 1C)。

今回、本論文著者のProninらは新たな合成戦略による1の全合成を報告した(図 1D)。合成序盤にDiels–Alder反応とラジカル環化反応によって三環式骨格を迅速に構築し、シクロブタンの開裂を伴う環拡大反応で八員環を形成した。その後、種々の立体選択的な官能基化を経て16工程で合成を完了した。

図1. (A) pleuromutilinとその誘導体 (B) Herzonらの合成 (C) Reismanらの合成 (D) 今回の研究

 

“Synthesis of Pleuromutilin”
Foy, N. J.; Pronin, S. V. J. Am. Chem. Soc.2022, 144, 10174–10179. DOI: 10.1021/jacs.2c04708

論文著者の紹介

研究者:Sergey V. Pronin
研究者の経歴:
2005 B.S., Lomonosov Moscow State University, Russia
2005–2010 Ph.D., University of Chicago, USA (Prof. Sergey A. Kozmin)
2011–2014 Postdoc., The Scripps Research Institute (Prof. Ryan A. Shenvi)
2014–  Assistant Professor, University of California, Irvine, USA
Present   Associate Professor, University of California, Irvine, USA

研究内容:HATを駆使したテルペノイドの全合成、ラジカル-極性クロスオーバー反応の開発

論文の概要

まず、市販化合物からそれぞれ一工程で調製した56Diels–Alder反応によってexo体の生成物7を得た。CANによる酸化で生成した8の金属ヒドリド水素原子移動により三環式化合物9を合成した。9から四工程で合成したアルキン10の還元的環化、続くレトロアルドール反応によるシクロブタンの開環を経て環拡大し、八員環の構築に成功した。続いて、C12位にジアステレオ選択的にメチル基を導入し12としたのち、保護基の除去を伴う分子内環化によりカルボン酸14を得た。その際、シリルエノールエーテルにもTBAFが作用するが、C2Cl6を加えることで、カルボニルα位(C4位)にクロロ基をもつケトンへ導いた。このクロロ基の導入はレトロマイケル反応による八員環の開裂を防ぐために重要であった(詳細は本文参照)。続いて、Ir触媒19存在下、青色光を照射することで14の脱炭酸が進行した。生じたアルキルラジカルは酸素あるいはTEMPOで捕捉され、シクロブタンの開裂を経てトリケトン15が生成した。C2位のコーンブルム酸化、C10位のエピ化により16としたのち、亜鉛を用いたC2位の還元によってトリケトン17を合成した。ナトリウムによるC11, 14位のケトンの還元はジアステレオ選択的に進行し、mutilin(18)を得た。最後にアルコールのアシル化と加溶媒分解によって1の全合成を達成した。

図2. pleuromutilinの合成経路

 

参考文献

  1. (a) Kavanagh, F.; Hervey, A.; Robbins, W. J. Antibiotic Substances from Basidiomycetes. VIII. Pleurotus Mutilus (Fr.) Sacc. and Pleurotus Passeckerianus Pilat. Natl. Acad. Sci. U.S.A. 1951, 37, 570–574. DOI: 10.1073/pnas.37.9.570
  2. (a) Rittenhouse, S.: Biswas, S.; Broskey, J.; McCloskey, L.; Moore, T.; Vasey, S.; West, J.; Zalacain, M.; Zonis R.; Payne, D. Selection of Retapamulin, a Novel Pleuromutilin for Topical Use. Antimicrob. Agents Chemother. 2006, 50, 3882–3885. DOI: 10.1128/AAC.00178-06 (b) Chahine, E. B.; Sucher, A. J. Lefamulin: The First Systemic Pleuromutilin Antibiotic. Ann. Pharmacother. 2020, 54, 1203–1214. DOI: 10.1177/1060028020932521
  3. (a) Thirring, K.; Heilmayer, W.; Riedl, R.; Kollmann, H.; Ivezic-Schoenfeld, Z.; Wicha, W.; Paukner, S.; Strickmann, D. 12-epi WO2015110481A1, July 30, 2015. (b) Zeng, M.; Murphy, S. K.; Herzon, S. B. Development of a Modular Synthetic Route to (+)-Pleuromutilin and (+)-12-epi-mutilins, and Related Structures. J. Am. Chem. Soc. 2017, 139, 16377–16388. DOI: 10.1021/jacs.7b09869
  4. (a) Gibbons, E. G. Total Synthesis of (±)-Pleuromutilin. J. Am. Chem. Soc. 1982, 104, 1767–1769. DOI: 10.1021/ja00370a067 (b) Boeckman, R. K., Jr.; Springer, D. M.; Alessi, T. R. Synthetic Studies Directed Toward Naturally Occurring Cyclooctanoids. 2. Stereocontrolled Assembly of (±)-Pleuromutilin via a Remarkable Sterically Demanding Oxy-Cope Rearrangement. J. Am. Chem. Soc. 1989, 111, 8284–8286. DOI: 10.1021/ja00203a043 (c) Fazakerley, N. J.; Helm, M. D.; Procter, D. J. Total Synthesis of (+)-Pleuromutilin. Chem. Eur. J. 2013, 19, 6718–6723. DOI: 10.1002/chem.201300968
  5. (a) Murphy, S. K.; Zeng, M.; Herzon, S. B. A Modular and Enantioselective Synthesis of the Pleuromutilin Antibiotics. Science 2017, 356, 956–959. DOI: 1126/science.aan0003 (b) Farney, E. P.; Feng, S. S.; Schäfers, F.; Reisman, S. E. Total Synthesis of (+)-Pleuromutilin. J. Am. Chem. Soc. 2018, 140, 1267–1270. DOI: 10.1021/jacs.7b13260
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【7/21 23:59〆切】研究費総額100万円!「AI × ◯…
  2. 研究費総額100万円!30年後のミライをつくる若手研究者を募集し…
  3. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化…
  4. 9‐Dechlorochrysophaentin Aの合成と細胞…
  5. Dead Endを回避せよ!「全合成・極限からの一手」①(解答編…
  6. 給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極…
  7. セミナー「マイクロ波化学プロセスでイノベーションを起こす」
  8. 有機合成化学協会誌2018年3月号:π造形科学・マグネシウムカル…

注目情報

ピックアップ記事

  1. リアル「ブレイキング・バッド」!薬物製造元教授を逮捕 中国
  2. 材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜
  3. 第88回―「新規なメソポーラス材料の創製と応用」Dongyuan Zhao教授
  4. 波動-粒子二重性 Wave-Particle Duality: で、粒子性とか波動性ってなに?
  5. ジェイコブセン・香月エポキシ化反応 Jacobsen-Katsuki Epoxidation
  6. スズ化合物除去のニュースタンダード:炭酸カリウム/シリカゲル
  7. 有機合成化学協会誌2017年9月号:キラルケイ素・触媒反応・生体模倣反応・色素・開殻π造形
  8. 積極的に英語の発音を取り入れてみませんか?
  9. 岡大教授が米国化学会賞受賞
  10. やせ薬「塩酸フェンフルラミン」サヨウナラ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP