[スポンサーリンク]

ケムステニュース

熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性

[スポンサーリンク]

Scientists at Rice University in Texas have developed a device which converts heat into light by squeezing it into a smaller bandgap. The ‘hyperbolic thermal emitter’ could be combined with a PV system to convert energy otherwise wasted as heat – a development the researchers say could drastically increase efficiency. (引用:pv-magazine 7月29日)

家の屋根や空き地に設置して太陽光を使って発電することができる太陽電池ですが、市場で使われているシリコン型の太陽電池の発電効率は高くても20%で、最も発電効率が高い多接合型太陽電池でも現状47.1%という値がチャンピオンレコードとなっています。この発電効率が半分以下になってしまう理由ですが、太陽光には紫外光から赤外光まで様々な波長の光が含まれている一方、太陽電池に使われている材料はそれぞれ決まった範囲の光のみ電気に変換し、太陽光すべてを電気に変換できないことが挙げられます。そのため太陽光すべての光、特に太陽電池による発電に適さない赤外線を活用する研究が行われています。

発電効率世界記録(引用:NREL

物体は高温になると輻射光と呼ばれる光を発することが知られていて、太陽光もその放射光の一つであり、ハロゲンヒーターやカーボンヒーターはランプから発せられる輻射光=赤外線によって人が温まることができる装置です。輻射光は一般的に連続スペクトルですが、物体が波長が整った光を放射させることができれば、太陽光の中の赤外線を使ってその物体を加熱し、そこから発生する輻射光を太陽電池に照射すれば、太陽光だけの発電よりも効率よく発電することができます。本研究では、まさに特定の波長の光を発する構造体の開発に成功しました。

前置きが長くなりましたが、本研究では平均長さが1.4nmのカーボンナノチューブを使って薄膜を作製し、それをタングステンの基板上に移すことで巨視的に整列されたカーボンナノチューブの構造体を作製しました。具体的には、下の写真のように、数μmごとにカーボンナノチューブの薄膜が整列しているような構造体で、これを減圧下で700度に加熱すると数μmに極大波長を持つ発光スペクトルが得られました。様々な薄膜のサイズにてスペクトルを測定したところ、スペクトルに違いが表れ、0.7μm×1.05μmのカーボンナノチューブの薄膜を整列されたときに最もシャープな極大波長を持つ発光スペクトルが得られました。これは、カーボンナノチューブが熱を吸収する際にはどこからでも吸収できるものの、内部では電子が一方向にしか動くことができないため、輻射光として放出されるときは、狭い波長領域を持つ光になると主張しています。

開発した構造体、白い直方体がカーボンナノチューブの薄膜と上に成膜されたSiO2(引用:Rice University News and Media Relations

この研究を発表したのはアメリカ、ライス大学河野淳一郎教授らのグループで、以前にもケムステでカーボンナノチューブの研究について紹介させていただいたことがあります。本研究も、向きがそろったカーボンナノチューブ薄膜を使ったからこそ成功した成果であるようです。実験では、太陽光ではなくヒーターを使って加熱していましたが太陽電池と組み合わせた実験も計画していて、この発光体を組み合わせると太陽電池の発電効率を理論上80%まで向上できるとこの研究グループは主張しています。同様の輻射光による発電は京都大学工学研究科電子工学専攻の野田進教授のグループでも進められていて、こちらはシリコンナノロッドの構造体を使った成果を2016年に発表しています。

他の太陽光の赤外線を活用する研究として、太陽光発電と水の加温を同時に行う研究も行われていて太陽電池と組み合わせて65%の総合発電効率を示すシステムが開発されていますが、温水の応用は限定的です。そのため、このような輻射熱による変換は有用であると考えられます。ただし、太陽光による発電と、集光した光による加熱、と輻射光による発電をどのようなモジュールで効率よく行うのかが気になる点です。日本では、太陽光発電に関する補助金の問題から話題が少なくなってきていますが、発電効率の記録が毎年更新されているように、太陽光発電に関する研究は世界中で続けられています。そのためこの技術もいつか実用されることを期待します。

関連書籍

関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. 位相情報を含んだ波動関数の可視化に成功
  2. 大日本製薬と住友製薬が来年10月合併・国内6位に
  3. 塩野義製薬/米クレストール訴訟、控訴審でも勝訴
  4. 米社が液晶パネルのバックライトにカーボン・ナノチューブを採用
  5. カーボンナノペーパー開発 信州大、ナノテク新素材
  6. 長井長義の日記など寄贈 明治の薬学者、徳島大へ
  7. 「マイクロリアクター」装置化に成功
  8. 第7回ImPACT記者懇親会が開催

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~
  2. 氷河期に大量のメタン放出 十勝沖の海底研究で判明
  3. START your chemi-storyー日産化学工業会社説明会2018
  4. マーシャル プロパルギル化 Marshall Propargylation
  5. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction
  6. “関節技”でグリコシル化を極める!
  7. ライバルのラボで大発見!そのときあなたはどうする?
  8. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition
  9. 徒然なるままにセンター試験を解いてみた
  10. NICT、非揮発性分子を高真空中に分子ビームとして取り出す手法を開発

関連商品

注目情報

注目情報

最新記事

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

Chem-Station Twitter

PAGE TOP