[スポンサーリンク]

ケムステニュース

熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性

[スポンサーリンク]

Scientists at Rice University in Texas have developed a device which converts heat into light by squeezing it into a smaller bandgap. The ‘hyperbolic thermal emitter’ could be combined with a PV system to convert energy otherwise wasted as heat – a development the researchers say could drastically increase efficiency. (引用:pv-magazine 7月29日)

家の屋根や空き地に設置して太陽光を使って発電することができる太陽電池ですが、市場で使われているシリコン型の太陽電池の発電効率は高くても20%で、最も発電効率が高い多接合型太陽電池でも現状47.1%という値がチャンピオンレコードとなっています。この発電効率が半分以下になってしまう理由ですが、太陽光には紫外光から赤外光まで様々な波長の光が含まれている一方、太陽電池に使われている材料はそれぞれ決まった範囲の光のみ電気に変換し、太陽光すべてを電気に変換できないことが挙げられます。そのため太陽光すべての光、特に太陽電池による発電に適さない赤外線を活用する研究が行われています。

発電効率世界記録(引用:NREL

物体は高温になると輻射光と呼ばれる光を発することが知られていて、太陽光もその放射光の一つであり、ハロゲンヒーターやカーボンヒーターはランプから発せられる輻射光=赤外線によって人が温まることができる装置です。輻射光は一般的に連続スペクトルですが、物体が波長が整った光を放射させることができれば、太陽光の中の赤外線を使ってその物体を加熱し、そこから発生する輻射光を太陽電池に照射すれば、太陽光だけの発電よりも効率よく発電することができます。本研究では、まさに特定の波長の光を発する構造体の開発に成功しました。

前置きが長くなりましたが、本研究では平均長さが1.4nmのカーボンナノチューブを使って薄膜を作製し、それをタングステンの基板上に移すことで巨視的に整列されたカーボンナノチューブの構造体を作製しました。具体的には、下の写真のように、数μmごとにカーボンナノチューブの薄膜が整列しているような構造体で、これを減圧下で700度に加熱すると数μmに極大波長を持つ発光スペクトルが得られました。様々な薄膜のサイズにてスペクトルを測定したところ、スペクトルに違いが表れ、0.7μm×1.05μmのカーボンナノチューブの薄膜を整列されたときに最もシャープな極大波長を持つ発光スペクトルが得られました。これは、カーボンナノチューブが熱を吸収する際にはどこからでも吸収できるものの、内部では電子が一方向にしか動くことができないため、輻射光として放出されるときは、狭い波長領域を持つ光になると主張しています。

開発した構造体、白い直方体がカーボンナノチューブの薄膜と上に成膜されたSiO2(引用:Rice University News and Media Relations

この研究を発表したのはアメリカ、ライス大学河野淳一郎教授らのグループで、以前にもケムステでカーボンナノチューブの研究について紹介させていただいたことがあります。本研究も、向きがそろったカーボンナノチューブ薄膜を使ったからこそ成功した成果であるようです。実験では、太陽光ではなくヒーターを使って加熱していましたが太陽電池と組み合わせた実験も計画していて、この発光体を組み合わせると太陽電池の発電効率を理論上80%まで向上できるとこの研究グループは主張しています。同様の輻射光による発電は京都大学工学研究科電子工学専攻の野田進教授のグループでも進められていて、こちらはシリコンナノロッドの構造体を使った成果を2016年に発表しています。

他の太陽光の赤外線を活用する研究として、太陽光発電と水の加温を同時に行う研究も行われていて太陽電池と組み合わせて65%の総合発電効率を示すシステムが開発されていますが、温水の応用は限定的です。そのため、このような輻射熱による変換は有用であると考えられます。ただし、太陽光による発電と、集光した光による加熱、と輻射光による発電をどのようなモジュールで効率よく行うのかが気になる点です。日本では、太陽光発電に関する補助金の問題から話題が少なくなってきていますが、発電効率の記録が毎年更新されているように、太陽光発電に関する研究は世界中で続けられています。そのためこの技術もいつか実用されることを期待します。

関連書籍

[amazonjs asin=”4797399929″ locale=”JP” title=”炭素はすごい なぜ炭素は「元素の王様」といわれるのか (サイエンス・アイ新書)”] [amazonjs asin=”4061568035″ locale=”JP” title=”光化学―基礎から応用まで (エキスパート応用化学テキストシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. ダイセル化学、筑波研をアステラス製薬に売却
  2. 国公立大入試、2次試験の前期日程が実施 ~東京大学の化学の試験を…
  3. サンケイ化学、フェロモン剤を自社生産
  4. 海水から「イエローケーキ」抽出に成功、米科学者グループが発表
  5. 大陽日酸の産業ガスへの挑戦
  6. タンチョウ:殺虫剤フェンチオンで中毒死増加
  7. 小学2年生が危険物取扱者甲種に合格!
  8. ベンゼンの害、低濃度でも 血液細胞に損傷

注目情報

ピックアップ記事

  1. (+)-フロンドシンBの超短工程合成
  2. 基礎材料科学
  3. 密着型フィルムのニューフェイス:「ラボピタ」
  4. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  5. ミドリムシが燃料を作る!? 石油由来の軽油を100%代替可能な次世代バイオディーゼル燃料が完成
  6. 日本の海底鉱物資源の開発状況と課題、事業展望【終了】
  7. ノーベル賞への近道?ー研究室におけるナレッジマネジメントー
  8. 有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応
  9. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)
  10. 多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体積でもよし–

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー