[スポンサーリンク]

ケムステニュース

熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性

[スポンサーリンク]

Scientists at Rice University in Texas have developed a device which converts heat into light by squeezing it into a smaller bandgap. The ‘hyperbolic thermal emitter’ could be combined with a PV system to convert energy otherwise wasted as heat – a development the researchers say could drastically increase efficiency. (引用:pv-magazine 7月29日)

家の屋根や空き地に設置して太陽光を使って発電することができる太陽電池ですが、市場で使われているシリコン型の太陽電池の発電効率は高くても20%で、最も発電効率が高い多接合型太陽電池でも現状47.1%という値がチャンピオンレコードとなっています。この発電効率が半分以下になってしまう理由ですが、太陽光には紫外光から赤外光まで様々な波長の光が含まれている一方、太陽電池に使われている材料はそれぞれ決まった範囲の光のみ電気に変換し、太陽光すべてを電気に変換できないことが挙げられます。そのため太陽光すべての光、特に太陽電池による発電に適さない赤外線を活用する研究が行われています。

発電効率世界記録(引用:NREL

物体は高温になると輻射光と呼ばれる光を発することが知られていて、太陽光もその放射光の一つであり、ハロゲンヒーターやカーボンヒーターはランプから発せられる輻射光=赤外線によって人が温まることができる装置です。輻射光は一般的に連続スペクトルですが、物体が波長が整った光を放射させることができれば、太陽光の中の赤外線を使ってその物体を加熱し、そこから発生する輻射光を太陽電池に照射すれば、太陽光だけの発電よりも効率よく発電することができます。本研究では、まさに特定の波長の光を発する構造体の開発に成功しました。

前置きが長くなりましたが、本研究では平均長さが1.4nmのカーボンナノチューブを使って薄膜を作製し、それをタングステンの基板上に移すことで巨視的に整列されたカーボンナノチューブの構造体を作製しました。具体的には、下の写真のように、数μmごとにカーボンナノチューブの薄膜が整列しているような構造体で、これを減圧下で700度に加熱すると数μmに極大波長を持つ発光スペクトルが得られました。様々な薄膜のサイズにてスペクトルを測定したところ、スペクトルに違いが表れ、0.7μm×1.05μmのカーボンナノチューブの薄膜を整列されたときに最もシャープな極大波長を持つ発光スペクトルが得られました。これは、カーボンナノチューブが熱を吸収する際にはどこからでも吸収できるものの、内部では電子が一方向にしか動くことができないため、輻射光として放出されるときは、狭い波長領域を持つ光になると主張しています。

開発した構造体、白い直方体がカーボンナノチューブの薄膜と上に成膜されたSiO2(引用:Rice University News and Media Relations

この研究を発表したのはアメリカ、ライス大学河野淳一郎教授らのグループで、以前にもケムステでカーボンナノチューブの研究について紹介させていただいたことがあります。本研究も、向きがそろったカーボンナノチューブ薄膜を使ったからこそ成功した成果であるようです。実験では、太陽光ではなくヒーターを使って加熱していましたが太陽電池と組み合わせた実験も計画していて、この発光体を組み合わせると太陽電池の発電効率を理論上80%まで向上できるとこの研究グループは主張しています。同様の輻射光による発電は京都大学工学研究科電子工学専攻の野田進教授のグループでも進められていて、こちらはシリコンナノロッドの構造体を使った成果を2016年に発表しています。

他の太陽光の赤外線を活用する研究として、太陽光発電と水の加温を同時に行う研究も行われていて太陽電池と組み合わせて65%の総合発電効率を示すシステムが開発されていますが、温水の応用は限定的です。そのため、このような輻射熱による変換は有用であると考えられます。ただし、太陽光による発電と、集光した光による加熱、と輻射光による発電をどのようなモジュールで効率よく行うのかが気になる点です。日本では、太陽光発電に関する補助金の問題から話題が少なくなってきていますが、発電効率の記録が毎年更新されているように、太陽光発電に関する研究は世界中で続けられています。そのためこの技術もいつか実用されることを期待します。

関連書籍

[amazonjs asin=”4797399929″ locale=”JP” title=”炭素はすごい なぜ炭素は「元素の王様」といわれるのか (サイエンス・アイ新書)”] [amazonjs asin=”4061568035″ locale=”JP” title=”光化学―基礎から応用まで (エキスパート応用化学テキストシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 三菱化学の4‐6月期営業利益は前年比+16.1%
  2. 化学大手、原油高で原料多様化・ナフサ依存下げる
  3. 「パキシル」服用の自殺者増加 副作用の疑い
  4. インフルエンザ治療薬「CS‐8958」、09年度中にも国内申請へ…
  5. 住友化学、Dow Chemical社から高分子有機EL用材料事業…
  6. タンニンでさび防ぐ効果 八王子の会社
  7. 新薬と併用、高い効果
  8. シロアリの女王フェロモンの特定に成功

注目情報

ピックアップ記事

  1. 藤田 誠 Makoto Fujita
  2. 再生医療ーChemical Times特集より
  3. 第15回 触媒の力で斬新な炭素骨格構築 中尾 佳亮講師
  4. コープ脱離 Cope Elimination
  5. 死刑囚によるVXガスに関する論文が掲載される
  6. pH応答性硫化水素ドナー分子の開発
  7. 第95回―「生物学・材料化学の問題を解決する化学ツールの開発」Ivan Dmochowski教授
  8. CAS Future Leaders Program 2023 参加者インタビュー
  9. ワインレブアミドを用いたトリフルオロメチルケトン類の合成
  10. 2-トリメチルシリル-1,3-ジチアン:1,3-Dithian-2-yltrimethylsilane

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP