[スポンサーリンク]

ケムステニュース

熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性

[スポンサーリンク]

Scientists at Rice University in Texas have developed a device which converts heat into light by squeezing it into a smaller bandgap. The ‘hyperbolic thermal emitter’ could be combined with a PV system to convert energy otherwise wasted as heat – a development the researchers say could drastically increase efficiency. (引用:pv-magazine 7月29日)

家の屋根や空き地に設置して太陽光を使って発電することができる太陽電池ですが、市場で使われているシリコン型の太陽電池の発電効率は高くても20%で、最も発電効率が高い多接合型太陽電池でも現状47.1%という値がチャンピオンレコードとなっています。この発電効率が半分以下になってしまう理由ですが、太陽光には紫外光から赤外光まで様々な波長の光が含まれている一方、太陽電池に使われている材料はそれぞれ決まった範囲の光のみ電気に変換し、太陽光すべてを電気に変換できないことが挙げられます。そのため太陽光すべての光、特に太陽電池による発電に適さない赤外線を活用する研究が行われています。

発電効率世界記録(引用:NREL

物体は高温になると輻射光と呼ばれる光を発することが知られていて、太陽光もその放射光の一つであり、ハロゲンヒーターやカーボンヒーターはランプから発せられる輻射光=赤外線によって人が温まることができる装置です。輻射光は一般的に連続スペクトルですが、物体が波長が整った光を放射させることができれば、太陽光の中の赤外線を使ってその物体を加熱し、そこから発生する輻射光を太陽電池に照射すれば、太陽光だけの発電よりも効率よく発電することができます。本研究では、まさに特定の波長の光を発する構造体の開発に成功しました。

前置きが長くなりましたが、本研究では平均長さが1.4nmのカーボンナノチューブを使って薄膜を作製し、それをタングステンの基板上に移すことで巨視的に整列されたカーボンナノチューブの構造体を作製しました。具体的には、下の写真のように、数μmごとにカーボンナノチューブの薄膜が整列しているような構造体で、これを減圧下で700度に加熱すると数μmに極大波長を持つ発光スペクトルが得られました。様々な薄膜のサイズにてスペクトルを測定したところ、スペクトルに違いが表れ、0.7μm×1.05μmのカーボンナノチューブの薄膜を整列されたときに最もシャープな極大波長を持つ発光スペクトルが得られました。これは、カーボンナノチューブが熱を吸収する際にはどこからでも吸収できるものの、内部では電子が一方向にしか動くことができないため、輻射光として放出されるときは、狭い波長領域を持つ光になると主張しています。

開発した構造体、白い直方体がカーボンナノチューブの薄膜と上に成膜されたSiO2(引用:Rice University News and Media Relations

この研究を発表したのはアメリカ、ライス大学河野淳一郎教授らのグループで、以前にもケムステでカーボンナノチューブの研究について紹介させていただいたことがあります。本研究も、向きがそろったカーボンナノチューブ薄膜を使ったからこそ成功した成果であるようです。実験では、太陽光ではなくヒーターを使って加熱していましたが太陽電池と組み合わせた実験も計画していて、この発光体を組み合わせると太陽電池の発電効率を理論上80%まで向上できるとこの研究グループは主張しています。同様の輻射光による発電は京都大学工学研究科電子工学専攻の野田進教授のグループでも進められていて、こちらはシリコンナノロッドの構造体を使った成果を2016年に発表しています。

他の太陽光の赤外線を活用する研究として、太陽光発電と水の加温を同時に行う研究も行われていて太陽電池と組み合わせて65%の総合発電効率を示すシステムが開発されていますが、温水の応用は限定的です。そのため、このような輻射熱による変換は有用であると考えられます。ただし、太陽光による発電と、集光した光による加熱、と輻射光による発電をどのようなモジュールで効率よく行うのかが気になる点です。日本では、太陽光発電に関する補助金の問題から話題が少なくなってきていますが、発電効率の記録が毎年更新されているように、太陽光発電に関する研究は世界中で続けられています。そのためこの技術もいつか実用されることを期待します。

関連書籍

[amazonjs asin=”4797399929″ locale=”JP” title=”炭素はすごい なぜ炭素は「元素の王様」といわれるのか (サイエンス・アイ新書)”] [amazonjs asin=”4061568035″ locale=”JP” title=”光化学―基礎から応用まで (エキスパート応用化学テキストシリーズ)”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 2009年ロレアル・ユネスコ女性科学者 日本奨励賞発表
  2. <アスクル>無許可で危険物保管 消防法で義務づけ
  3. 住友化・大日本住友薬、ファイザーと高血圧症薬で和解
  4. 傷んだ髪にタウリン…東工大などの研究で修復作用判明
  5. 高知市で「化学界の権威」を紹介する展示が開催中
  6. 三和化学と住友製薬、糖尿病食後過血糖改善剤「ミグリトール」の共同…
  7. 始まるPCB処理 利便性追求、重い代償
  8. 名大・山本名誉教授に 「テトラへドロン賞」 有機化学分野で業績

注目情報

ピックアップ記事

  1. ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!
  2. 解毒薬のはなし その2 化学兵器系-2
  3. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  4. 9‐Dechlorochrysophaentin Aの合成と細胞壁合成阻害活性の評価
  5. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  6. HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC
  7. いつも研究室で何をしているの?【一問一答】
  8. 可逆的に解離・会合を制御可能なサッカーボール型タンパク質ナノ粒子 TIP60の開発
  9. マーティン・オストライヒ Martin Oestreich
  10. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP