[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解金めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。四回目の今回は、いよいよ電解金めっきについてご覧いただきます。

貴金属の代表格である金は、その耐食性の高さと優れた外見から電子部品向けや装飾用途に広くめっきが行われています。電気化学的手法を用いないケースも含めれば、古くは奈良の大仏に施されたものなど、長い歴史を誇る技術でもあります。

大仏も金めっきで作られました(画像:Flickr

電子技術を支える金めっき

近年ではエレクトロニクス産業の発展に伴って電子部品向けの用途が拡大しています。

電子部品向けの金めっきは多くの場合、配線層のの表面に施され、酸化防止はんだづけ性の向上に一役買っています。

しかし、銅と金はいずれも極めて拡散しやすいことから、銅の上に直接金をめっきすると時間とともに相互拡散してしまいます。

そこで、銅と金との間に拡散を抑制する材料の層を形成する手法が広くとられており、具体的な金属としてはニッケルパラジウムなどの金属が有効とされています。銅の上に金を直接めっき(置換めっき)するDIG(direct immersion gold)もありますが、無電解ニッケルめっきを施した上に置換金めっきをするENIG(electroless nickel immersion gold)や無電解パラジウムめっきを用いるEPIG(electroless palladium immersion gold)、その両方の層を形成するENEPIG(electroless nickel electroless palladium immersion gold)などを基盤とする手法が代表的です。

plating

モバイル端末に欠かせないめっき(画像:Flickr

軟質金と硬質金

また、金めっきは得られるめっき皮膜の性状(硬度)から軟質金(純金)硬質金(合金)とに大別されます。純金は接触抵抗が低いという長所を持つ一方、金箔から類推できるような柔らかさも特徴的です。これはワイヤボンディングなど、外力による接合には極めて適した性質でありますが、機械的な刺激が繰り返し加わる用途には不向きです。

ワイヤボンディング部分には軟質金が用いられます(画像:Wikipedia

そこで、このような用途(コネクタなど)には少量の金属を添加した金合金を用いて硬度を上昇させるのが一般的です。この硬質金には通常、コバルトニッケルなどが添加されています。

多くのコネクタには硬質金が用いられています(画像:Wikipedia

配位子の重要性

さて、イオン化傾向の全く異なるこれらの卑金属と金を含む水溶液を単に電解しても、通常は金のみが析出してしまうため所望の合金は得られません。

そこで、適切な配位子を添加して両者の還元電位を制御・接近させることで、一定の組成比で析出させています。

また、極めて貴な金は、遊離イオンでは容易に還元を受けて単体を与えやすいことから、めっき浴を長期間安定して利用するためにも配位子は重要な役割を果たしています。

金イオンと安定に錯形成する配位子として最も有効なものが、シアン化物イオンCNです。

その安定度定数はlog β = 38.7[1]という驚異的なものです。

そのため、シアン化合物は古くから金の精錬(青化法)にも利用されてきました。

シアンフリー化の潮流

安価で安定なシアン化物浴ですが、ご存じの通りシアン化合物は猛毒であり、酸性にすると気体のシアン化水素を発生することから厳格な管理が求められます。そのため、シアン化合物を用いることが忌避されるケースもあります。

そこで近年脚光を浴びているのがシアンフリーのめっき浴です。いくつかの配位子が有力視されていますが、亜硫酸イオンを用いる浴や、亜硫酸イオンとチオ硫酸イオンを併用する浴が普及しています。金の亜硫酸錯体はシアン錯体には劣るものの、比較的高い安定度定数を示します。また、亜硫酸イオンとチオ硫酸イオンの混合錯体ではさらに安定性が向上することが知られています。

このほかにもアミノ酸であるシステインを用いる手法なども研究されています。

添加剤と液性

ところで、現実のめっき浴では単に純金や金合金の元となる成分のみを電解しても、硬度や耐食性、平滑さなどの面で実用的な特性を持った被膜が得られないケースが多々あります。そのため、目的に応じた種々の添加剤がこれに加えられることとなります。

例えば、軟質金めっき液にはタリウム塩セレン化合物などが、硬質金めっき液には2,2’-ビピリジルなどがしばしば添加されます。既存のめっき液の改良や新規開発にはこれら添加剤の開発が欠かせず、この分野において各社が日夜しのぎを削っています。添加剤によって皮膜の特性が劇的に変化するケースも多く、近年ではアモルファスの金をめっき可能な浴の開発[2]なども注目されています。

また、目的のめっき皮膜の性状や要求される性能に応じて用いられるめっき浴の液性も異なります。硬質金向けにはクエン酸などを含む弱酸性(HCNが生じないpH>4程度)の浴が、軟質金向けにはリン酸緩衝液などを含む中性の浴が用いられます。なお、装飾用の金めっき浴はアルカリ性であることが一般的です。これは、電子工学用途にアルカリ性の浴を用いると、レジストの溶出など不本意な現象を引き起こすことがあるためです。

・・・

今回も少し長くなりましたのでこのあたりで区切ります。次回は金めっきの下地として広く用いられている電解ニッケルめっきについて詳しく見ていきますのでお楽しみに!

参考文献

[1] Green, T.A. Gold electrodeposition for microelectronic, optoelectronic and microsystem applications. Gold Bull 40, 105–114 (2007). https://doi.org/10.1007/BF03215566

[2] K. Senda, M. Kato: The Chmical Times, 205, 7 (2007).https://www.kanto.co.jp/dcms_media/other/backno6_pdf85.pdf

関連書籍

[amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”4526068144″ locale=”JP” title=”本当に実務に役立つプリント配線板のめっき技術”] [amazonjs asin=”4526049964″ locale=”JP” title=”電子部品のめっき技術”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…
  2. マテリアルズ・インフォマティクスにおける分子生成の基礎
  3. CYP総合データベース: SuperCYP
  4. ケムステイブニングミキサー 2024 報告
  5. 科学を理解しようとしない人に科学を語ることに意味はあるのか?
  6. C–C, C–F, C–Nを切ってC–N, C–Fを繋げるβ-フ…
  7. 【ユシロ】新卒採用情報(2026卒)
  8. 電気刺激により電子伝導性と白色発光を発現するヨウ素内包カーボンナ…

注目情報

ピックアップ記事

  1. 住友化学の9月中間営業益は+20.5%、精密・医薬など好調で
  2. 芳香族メタ光環化付加 Aromatic meta-photocycloaddition
  3. 「世界の最先端で研究する」という夢と実際 ーカリフォルニア大学バークレー校 Long 研究室より
  4. マテリアルズ・インフォマティクスの普及に取り組む事業開発ポジションとは?〜最前線メンバー3人のキャリア選択と今について語る〜
  5. 沈 建仁 Jian-Ren Shen
  6. 切磋琢磨するアメリカの科学者たち―米国アカデミアと競争的資金の申請・審査の全貌
  7. 酸素 Oxygen -空気や水を構成する身近な元素
  8. ノバルティス、米カイロンを5000億円で完全子会社に
  9. 薬物耐性菌を学ぶーChemical Times特集より
  10. 大学入試のあれこれ ②

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP