[スポンサーリンク]

K

ケテンの[2+2]環化付加反応 [2+2] Cycloaddition of Ketene

[スポンサーリンク]

概要

オレフィン-ケテン間の付加環化反応は、シクロブタノン環と込み入った炭素骨格を一挙に構築できる強力な手法である。不安定中間体であるケテンは系中で生成させる。位置異性の制御が難しいため、分子内反応条件下で用いられることが多い。

基本文献

  • Staudinger, H. Chem. Ber. 1905, 38, 1735. doi:10.1002/cber.19050380283
  • Wilsmore, N. T. M. J. Chem. Soc. 1907, 91, 1938.
  • Chick, F.; Wilsmore, N. T. M. J. Chem. Soc. 1908, 946.

<Reviews>

開発の歴史

1902年にはウォルフによってウォルフ転位が報告された。現在はケテンを経由していることが明らかとなっているが、当時詳細は不明であった。一方、1905年にシュタウディンガー(1953年ノーベル賞受賞者)は偶然にもケテン(ジフェニルケテン)をはじめて合成した。さらに1907年に、Wilsmoreが無水酢酸に加熱した白金を作用させることでケテンの発生に成功している。

ヘルマン・シュタウディンガー

ヘルマン・シュタウディンガー

 

反応機構

協奏的な[2+2]機構で進行する。オレフィンとケテンがねじれの位置関係から接近する遷移状態モデルが受け入れられている。これはcisオレフィンがtransオレフィンよりも高反応性を示す実験事実を上手く説明する。(参考: J. Org. Chem. 1980, 45, 4483.

22_ketene_5

 

反応例

Ginkgolide Bの合成[1]:本合成においては、嵩高いt-ブチル基との反発がジアステレオ選択的環化におけるカギとなっている。 22_ketene_2.gif Antheliolide Aの合成[2] 22_ketene_3.gif

一般にケテンはジエンと[2+2]付加を優先させるが、アセトキシアクリロニトリルはDiels-Alder反応を進行させるケテン等価体として捉えることができる。[3]

22_ketene_6

クロムFisherカルベンを光照射することでケテンを系中生成させ、反応に用いることができる。[4]

22_ketene_7

実験手順

ケテンの発生法:ケテンは酸ハライドを嵩高い塩基で処理する、α-ハロ酸ハライドを還元的に処理することで系中生成できる。ケテンダイマーを加熱もしく光照射で分解することでも得られる。Wolff転位経由でも得ることができる。

22_ketene_4

実験のコツ・テクニック

参考文献

[1] Corey, E. J.; Kang, M. C.; Desai, M. C.; Ghosh, A. K.; Houpis, I. N. J. Am. Chem. Soc. 1988, 110, 649. DOI: 10.1021/ja00210a083
[2] Mushti, C. S.; Kim, J.-H.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 14050. DOI: 10.1021/ja066336b
[3] Bartlett, P. D.; Tate, B. E. J. Am. Chem. Soc. 1956, 78, 2473. DOI: 10.1021/ja01592a035
[4] Moser, W. H.; Hegedus, L. S. J. Am. Chem. Soc. 1996, 118, 7873. DOI: 10.1021/ja9537585

関連書籍

[amazonjs asin=”0471692824″ locale=”JP” title=”Ketenes”]

関連リンク

関連記事

  1. ディールス・アルダー反応 Diels-Alder Reactio…
  2. 四酸化ルテニウム Ruthenium Tetroxide (Ru…
  3. クラウソン=カース ピロール合成 Clauson-Kaas Py…
  4. ダニシェフスキー・北原ジエン Danishefsky-Kitah…
  5. 求核的フルオロアルキル化 Nucleophilic Fluoro…
  6. マーティンスルフラン Martin’s Sulfur…
  7. ヨードラクトン化反応 Iodolactonization
  8. ヒンスバーグ オキシインドール合成 Hinsberg Oxind…

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?
  2. 2-プロパノールに潜む過酸化物生成の危険
  3. 櫛田 創 Soh Kushida
  4. 日本学士院賞・受賞化学者一覧
  5. あなたの分子を特別なカタチに―「CrystalProtein.com」
  6. 第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!
  7. 「超分子」でナノホース合成 人工毛細血管に道
  8. カール・フィッシャー滴定~滴定による含水率測定~
  9. サイエンスライティング超入門
  10. 有機合成化学協会誌2023年8月号:フェノール-カルベン不斉配位子・カチオン性ヨウ素反応剤・水・アルコール求核剤・核酸反応場・光応答型不斉触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP