[スポンサーリンク]

ディスカッション

細胞の中を旅する小分子|第三回(最終回)

[スポンサーリンク]

前回は、薬が目的細胞周辺に到着し細胞膜を通過し細胞質の世界までの世界を覗いてみました。今回の旅は細胞質から核内に入り核内の目標タンパクに到達するまでです。

 

核内へ突入

小分子は、細胞質から核膜孔を通過し、核内に入ります(Fig.6)。核膜孔は、直径39nmの分子までは能動的に拡散し核内に移行します。リボソームなどの巨大な分子はGTPを利用したエネルギー依存的な輸送系で輸送されるようです。

 

Fig6

Fig.6 核膜孔 (Mol. Biol. Cell Fig.12-9a)

 

 

一つの核に納められているDNAの総延長はおよそ2 mといわれています。

しかし、核の大きさは10 μm程度です。

どういうカラクリが存在するのでしょうか?

核内にDNAを収納するためにクロマチンという構造が重要な役割を果たしています。このクロマチンはタンパク質とDNAからなる複合体です。では、どのように折り畳まれているのでしょうか?DNA分子はとても細長いので、もつれるのを防ぐためにヒストン(4種のタンパク質からなる8量体)という筒状のタンパク質に巻き付いて構造を保持しています。DNAがヒストン8量体におよそ約1.7周巻きついた(約140ー150bp)構造をヌクレオソームといいます。このヌクレオソームの直径は11 nmです。このヌクレオソームと次のヌクレオソームを繋ぐDNAをlinker DNAと呼び、これが繰り返されることでbeads-on-a-string構造をとります。ヌクレオソームの10 nmの繊維は更に折り畳まれ、直径30 nmの繊維状の構造を形成します。次にこの30 nmの繊維構造が300 nmの幅のひだ上の構造をとり、それがさらに直径700 nmまで折り畳まれることで、最終的に細胞分裂のため最も機能的かつ効率的に折り畳まれ染色体となります(Fig.7)。

 

Fig7

Fig. 7 DNAの核内への収納法 (Mol. Biol. Cell 4-72)

分裂期以外の核内はどうなっているのでしょうか?通常の状態で、クロマチンは凝集の度合いによって、強く折り畳まれているために遺伝子発現が抑制されている領域(ヘテロクロマチン)と凝集度が低いため遺伝子の転写が活発に行われている領域(ユーロクロマチン)というおおきく2つの領域に分類でき、核内に広がっています。これが分裂をスムーズに行うため、コンパクトに折り畳まれた染色体になり、細胞分裂が始まります。

DNAの2本鎖に目を向けるとその直径は2nmであり、小分子で対応できる大きさであることがわかります。有名なP.B.Dervan(http://dervan.caltech.edu/)のminor grooveを利用した小分子でのDNAの認識からわかるように、major grooveもminor grooveも小分子で認識可能な大きさの範囲です(Fig.8)。

Fig8

Fig.8 groove (Mol. Biol. Cell Fig. 4-5)

さて最後に終着点である核内の標的蛋白について述べて旅を終わることにしたいと思います。核内の標的というとDNAに目がいきますが、他にも転写因子や核内レセプター(サイトゾルで結合し核内に移行するものもある)などが有名です。最近話題のEpigeneticの標的としては、DNA本体への修飾を標的にすることは少なく、ヒストンのひげ(〜30AA)への翻訳後修飾、アセチル化、リン酸化、メチル化、ユビキチン化等が標的となっていることが多いようです。ヒストンのヒゲへの修飾・認識は、修飾酵素の阻害も含めて、蛋白蛋白相互作用(PPI)が重要な働きをしていることが多くあり、創薬targetとして注目を集めています。

終わりに

Fig9

Fig.9 summary (Mol. Biol. Cell Fig.9-1)

まとめとして、Fig.9の両図に生体内における小分子薬の大きさを緑の枠で示しました。細胞内の標的に作用する生理活性物質のすごさが少しはわかっていただけたでしょうか?実際の創薬では、細胞から動物に効く化合物を見出す事が次のステップとなります。いずれ、説明できればと思います。本寄稿が、化合物の分子レベルでの細胞内の動きの具体的なイメージ化に寄与できれば嬉しく思います。

参考文献

1.Molecular biology of the Cell (5th edition, Garland Science)

2. D.S.Goodsell, Trends in Biochem. Sci. 1991, 16, 203-206.

MasaN.

投稿者の記事一覧

博士(工)。できる範囲で。

関連記事

  1. Reaxys体験レポート:ログイン~物質検索編
  2. ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御!…
  3. 【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チ…
  4. 水素社会実現に向けた連続フロー合成法を新開発
  5. 特許取得のための手続き
  6. 第37回反応と合成の進歩シンポジウムに参加してきました。
  7. 難分解性高分子を分解する画期的アプローチ:側鎖のC-H結合を活性…
  8. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アメリカ企業研究員の生活③:新入社員の採用プロセス
  2. スマイルス転位 Smiles Rearrangement
  3. 宇宙に輝く「鄒承魯星」、中国の生物化学の先駆者が小惑星の名前に
  4. バリー・ハリウェル Barry Halliwell
  5. マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?
  6. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る
  7. アルメニア初の化学系国際学会に行ってきた!①
  8. Anti-Markovnikov Hydration~一級アルコールへの道~
  9. 「人工金属酵素によるSystems Catalysisと細胞内触媒反応」University of Basel, T. R. Ward研より
  10. 各ジャーナル誌、続々とリニューアル!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP