[スポンサーリンク]

ディスカッション

細胞の中を旅する小分子|第三回(最終回)

前回は、薬が目的細胞周辺に到着し細胞膜を通過し細胞質の世界までの世界を覗いてみました。今回の旅は細胞質から核内に入り核内の目標タンパクに到達するまでです。

 

核内へ突入

小分子は、細胞質から核膜孔を通過し、核内に入ります(Fig.6)。核膜孔は、直径39nmの分子までは能動的に拡散し核内に移行します。リボソームなどの巨大な分子はGTPを利用したエネルギー依存的な輸送系で輸送されるようです。

 

Fig6

Fig.6 核膜孔 (Mol. Biol. Cell Fig.12-9a)

 

 

一つの核に納められているDNAの総延長はおよそ2 mといわれています。

しかし、核の大きさは10 μm程度です。

どういうカラクリが存在するのでしょうか?

核内にDNAを収納するためにクロマチンという構造が重要な役割を果たしています。このクロマチンはタンパク質とDNAからなる複合体です。では、どのように折り畳まれているのでしょうか?DNA分子はとても細長いので、もつれるのを防ぐためにヒストン(4種のタンパク質からなる8量体)という筒状のタンパク質に巻き付いて構造を保持しています。DNAがヒストン8量体におよそ約1.7周巻きついた(約140ー150bp)構造をヌクレオソームといいます。このヌクレオソームの直径は11 nmです。このヌクレオソームと次のヌクレオソームを繋ぐDNAをlinker DNAと呼び、これが繰り返されることでbeads-on-a-string構造をとります。ヌクレオソームの10 nmの繊維は更に折り畳まれ、直径30 nmの繊維状の構造を形成します。次にこの30 nmの繊維構造が300 nmの幅のひだ上の構造をとり、それがさらに直径700 nmまで折り畳まれることで、最終的に細胞分裂のため最も機能的かつ効率的に折り畳まれ染色体となります(Fig.7)。

 

Fig7

Fig. 7 DNAの核内への収納法 (Mol. Biol. Cell 4-72)

分裂期以外の核内はどうなっているのでしょうか?通常の状態で、クロマチンは凝集の度合いによって、強く折り畳まれているために遺伝子発現が抑制されている領域(ヘテロクロマチン)と凝集度が低いため遺伝子の転写が活発に行われている領域(ユーロクロマチン)というおおきく2つの領域に分類でき、核内に広がっています。これが分裂をスムーズに行うため、コンパクトに折り畳まれた染色体になり、細胞分裂が始まります。

DNAの2本鎖に目を向けるとその直径は2nmであり、小分子で対応できる大きさであることがわかります。有名なP.B.Dervan(http://dervan.caltech.edu/)のminor grooveを利用した小分子でのDNAの認識からわかるように、major grooveもminor grooveも小分子で認識可能な大きさの範囲です(Fig.8)。

Fig8

Fig.8 groove (Mol. Biol. Cell Fig. 4-5)

さて最後に終着点である核内の標的蛋白について述べて旅を終わることにしたいと思います。核内の標的というとDNAに目がいきますが、他にも転写因子や核内レセプター(サイトゾルで結合し核内に移行するものもある)などが有名です。最近話題のEpigeneticの標的としては、DNA本体への修飾を標的にすることは少なく、ヒストンのひげ(〜30AA)への翻訳後修飾、アセチル化、リン酸化、メチル化、ユビキチン化等が標的となっていることが多いようです。ヒストンのヒゲへの修飾・認識は、修飾酵素の阻害も含めて、蛋白蛋白相互作用(PPI)が重要な働きをしていることが多くあり、創薬targetとして注目を集めています。

終わりに

Fig9

Fig.9 summary (Mol. Biol. Cell Fig.9-1)

まとめとして、Fig.9の両図に生体内における小分子薬の大きさを緑の枠で示しました。細胞内の標的に作用する生理活性物質のすごさが少しはわかっていただけたでしょうか?実際の創薬では、細胞から動物に効く化合物を見出す事が次のステップとなります。いずれ、説明できればと思います。本寄稿が、化合物の分子レベルでの細胞内の動きの具体的なイメージ化に寄与できれば嬉しく思います。

参考文献

1.Molecular biology of the Cell (5th edition, Garland Science)

2. D.S.Goodsell, Trends in Biochem. Sci. 1991, 16, 203-206.

The following two tabs change content below.
MasaN.

MasaN.

博士(工)。できる範囲で。

関連記事

  1. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  2. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  3. 燃える化学の動画を集めてみました
  4. 反芳香族性を有する拡張型フタロシアニン
  5. 独自の有機不斉触媒反応を用いた (—)-himalensine …
  6. こんな装置見たことない!化学エンジニアリングの発明品
  7. 日本に居ながら、ナマの英語に触れる工夫
  8. プロセス化学ー合成化学の限界に挑戦するー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 市川アリルシアナート転位 Ichikawa Allylcyanate Rearrangement
  2. 超大画面ディスプレイ(シプラ)実現へ
  3. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  4. 比色法の化学(後編)
  5. グラフェン技術の最先端 ~量産技術と使いやすさの向上、今後の利用展開~
  6. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  7. ケムステイブニングミキサー2017ー報告
  8. ロナルド・ブレズロウ Ronald Breslow
  9. IRの基礎知識
  10. サーモサイエンティフィック「Exactive Plus」: 誰でも簡単に精密質量を!

関連商品

注目情報

注目情報

最新記事

信頼度の高い合成反応を学ぶ:Science of Synthesis(SoS)

今回はScience of Synthesis(SoS)という合成化学のオンラインデータベースを紹介…

ホイスラー合金を用いる新規触媒の発見と特性調節

第173回目のスポットライトリサーチは、東北大学 学際科学フロンティア研究所・小嶋隆幸 助教にお願い…

START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE

さあついに今年も就職活動の時期がやってきました。私の研究室でも今年はさすがに何名か就職活動をはじめま…

【ジーシー】新卒採用情報(2020卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

【ジーシー】新たな治療価値を創造するテクノロジー -BioUnion-

BioUnion(バイオユニオン)はグラスアイオノマーで培ってきたイオンの働きに着目し,新たに完成さ…

株式会社ジーシーってどんな会社?

株式会社ジーシーは歯科医療一筋に98年の歴史も持ち、歯科医療業界では国内NO.1のシェアを誇ります。…

PAGE TOP