[スポンサーリンク]

一般的な話題

計算化学:DFTって何? PartIII

前回の記事では、1930年前後から1980年頃までの量子化学の発展について簡単に説明しました。

今回は、DFT計算で使われる汎関数の種類、gaussianでの計算の流れなどを説明します。

前回と今回の記事を読むことにより、DFT計算の歴史的背景、理論、問題点、汎関数の種類、gaussianでの計算の流れなどが理解できます。これで、「DFTって何?」と聞かれても答えられるようになると思います。

今回の記事でも細かいところは省略していくので、興味のある方は一番下にある参考図書を読んで下さいね!

1930年前後から1980年頃までの歴史において、前回触れなかったけれど、重要なものとして、基底関数の開発(1950年Boys)、ローターン方程式(1950年Roothaan, Hall)などがあります。また、現在の計算化学に必須と言っても過言ではないGaussian(1970年、Pople)、Games(1982年)などのプログラムの開発もこの頃です。

 

様々な汎関数

以前の記事でお話ししたように、交換相関汎関数はコーン・シャム方程式の中で唯一近似されている部分です。よって、DFT計算の信頼性は、どの汎関数を選ぶかで決まります。これまで、星の数ほどの汎関数が開発されてきましたが、それらは次のように分類できます。

 

局所密度近似(LDA)汎関数
一般化勾配近似(GGA)汎関数
メタGGA汎関数
混成汎関数(ハイブリッド汎関数)
半経験的汎関数
プログレッシブ汎関数

 

シュレーディンガー方程式とは違い、交換相関汎関数の理想的な式の形は未知ですので、それぞれの研究者が、それぞれ好きなパラメーターで汎関数を作りました。
ある人は、交換相関汎関数は電子密度に比例すると言い、またある人は電子密度の微分に比例すると言った、、、というようにどの変数を使うか、ということで分類されています。さらには、幾つかの汎関数を組み合わせたものが良い(ハイブリッド汎関数)という人まで出てきて、カオスな感じです。
個々の汎関数の詳しい内容については、こちらの参考書を読むことをオススメします。式の成り立ちを化学者にもわかりやすく書いてあります。
今回は、有機合成化学者がよく使う代表的な汎関数を 2 つ紹介します。

まずは、B3LYPですっ!

B3LYP

B3LYP は、最初の混成汎関数であり、有機化学の世界でもっともよく使われている汎関数です(でした)。1993年に Becke により発表されました。

この汎関数にはハートリーフォック交換積分の混合率だけでなく、B88交換汎関数、LYP相関汎関数、そしてLDA交換・相関汎関数からの差のそれぞれの混合率の計三個のパラメータが含まれています。

B3LYP

半経験的パラメータは、a1 = 0.2、a2 = 0.72、a3 = 0.81 の 3 つです。これらのパラメーターをどのようにして決めたかというと、ベンチマークと言われる指標で、実験値と計算値が近くなるように設定されました。なので、数学的な意味はありません。こんなことを書くと、「なんだよ!DFT 計算って不正確じゃん。騙したナァァァ!」って思うかもしれませんが、そんなことはありません。むしろ、シュレーディンガー方程式を近似的に解く MP2 法などよりも計算結果と実験結果が一致します。

そもそも、

ヒトはなぜ計算化学を利用するか?

という、ある種、人生の根源的な問いについて考えてみると、計算結果と実験結果が一致するからに他ならないという解が得られるはずです。数学的にいくら正しくても、実験結果との誤差が大きければ誰も使いません。同様のことが、酵素や遺伝子配列などの相同性検索にも言えると思います。

機能が近ければ配列も近いはず!

という仮定は、進化的にも直感的にも正しいと感じるかもしれませんが、厳密に数学的に証明されたわけではありません。なぜ、研究者が相同性検索を使うかといえば、実験結果と一致するからです!!DFT 計算も同様です。

M06系

M062-X_Donald

また、最近よく使われ始めているのは、ドナルド らが開発した M06 系だと思います。こちらは半経験的汎関数に分類されており、38個の半経験的パラメータが入っています。しかし、M06が今後ずっと主流になるとは考えられてはおらず、このような半経験的汎関数は洗練された汎関数が開発されるまでの過渡的な汎関数と考えられています

遷移金属の入っている系には  M06、遷移金属の入っていない系には  M06-2x  が使われているような印象を受けます。また、弱い相互作用を見積もることが可能な汎関数ですので、ペリ環状反応などでは、B3LYP で構造最適化したのちに M062X  で一点計算している例をよく見かけます。

 

実際の計算の流れ

最近の計算プログラムは非常に使いやすくなっているため、まったく背景知識が無い人でも、化合物のエネルギーを計算したり、構造最適化を行なったり、スペクトルの計算が出来てしまいます。例えるならば、テレビゲーム

 

とりあえずインプットファイルを作り計算させれば、結果は出てきます。しかし、その結果が正しいのか?どのような意味があるか?を判断するには有機化学の知識が必要となります。また、エラーが起きた時に正しく対処するためには、背景にある理論や計算プログラムを良く理解しておく必要があります。

計算化学って言うけど、コンピューターが実際にどのような計算を行なってくれるのか答えられる人は少ないです。
例えば、分子構造最適化の計算手順は、大まかに以下のようになっています。

1.座標の読み込み
2.エネルギーの計算(Roothaan 方程式 SCF 計算)
3.力の計算
4.構造最適化

計算終了後のlog ファイルを見ると、どの部分が律速か、どのパラメーターを変えれば早くなるかなどが分かるかと思いますが、長くなってしまったので、詳しいことは次回、 計算化学:DFTって何? PartIV で書きます。

ここまで読んでいただいて、ありがとうございました。

The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 【悲報】HGS 分子構造模型 入手不能に
  2. なんと!アルカリ金属触媒で進む直接シリル化反応
  3. ボリルアジドを用いる直接的アミノ化
  4. ケムステも出ます!サイエンスアゴラ2013
  5. マイルの寄付:東北地方太平洋沖地震
  6. 高分子鎖を簡単に垂直に立てる -表面偏析と自己組織化による高分子…
  7. BASF International Summer Course…
  8. 光照射下に繰り返し運動をおこなう分子集合体

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 植物性油の再加熱によって毒物が発生
  2. 第5回慶應有機化学若手シンポジウム
  3. 品川硝子製造所跡(近代硝子工業発祥の碑)
  4. シクロペンタジエニル錯体の合成に一筋の光か?
  5. 活性ベースタンパク質プロファイリング Activity-Based Protein Profiling
  6. ノンコーディングRNA 〜 RNA分子の全体像を俯瞰する〜
  7. マクドナルドなど9社を提訴、発がん性物質の警告表示求め=カリフォルニア州
  8. 事故を未然に防ごう~確認しておきたい心構えと対策~
  9. 日本人化学者による卓越した化学研究
  10. 今週末は「科学の甲子園」観戦しよーぜ

関連商品

注目情報

注目情報

最新記事

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル化

第149回のスポットライトリサーチは、大阪大学大学院工学研究科 博士後期課程3年の木下 拓也 (きの…

有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン

化学協会が発行する有機合成化学協会誌、2018年7月号がオンライン公開されました。今月号のキ…

ウィリアム・ロウシュ William R. Roush

ウィリアム・R・ロウシュ(William R. Roush、1952年2月20日(Chula Vis…

Chem-Station Twitter

PAGE TOP