[スポンサーリンク]

スポットライトリサーチ

生体深部イメージングに有効な近赤外発光分子の開発

[スポンサーリンク]

第48回のスポットライトリサーチは、東京工業大学 生命理工学院・口丸高弘 助教にお願いしました。

口丸先生の属する近藤研究室では、とりわけがん組織に特徴的な微小環境のバイオイメージング法の開発を一つの柱として取り組んでいます。今回紹介する成果は、問題点の一つだった、蛍光分子の長波長化を達成し、それが実際に深部イメージングに有効であることを実証したという内容になります。プレスリリースおよび論文として公開されたことを機に、紹介させて頂く運びとなりました。

“A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging”
Kuchimaru, T.; Iwano, S.; Kiyama, M.; Mitsumata, S.; Kadonosono, T.; Niwa, H.; Maki, S.; Kizaka-Kondoh, S. Nat. Commun. 2016, 7, 11856. doi:10.1038/ncomms11856

研究室を主宰されている近藤科江 教授は、口丸先生をこう評しておられます。

口丸さんは、大学・大学院で量子工学を専攻し、X線顕微鏡を組み立てる研究をしていました。しかし、X線顕微鏡で観る対象である細胞に興味をもち、生物をほぼ独学で習得し、現在は、工学・生物学・医学の境界領域の研究に取り組んでいます。好奇心・探求心が彼の研究を、より大きく、深いものにしています。これからの成長が楽しみです。

それではいつも通り、現場のお話を伺ってみました。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

生物発光イメージングの重要な課題であった発光波長の長波長化を達成し、生体深部組織の高感度イメージングを可能にする実用的な合成基質AkaLumine-HCl (Aka-HCl)を報告しました。

生物発光イメージングは、バックグラウンドシグナルが非常に小さく、生体組織や小動物の非侵襲イメージングにおいて、蛍光イメージングよりも高感度に生命現象を可視化できます[1]。しかし、現在、標準的に用いられているホタルルシフェラーゼ (Fluc)とその天然基質のD-luciferinによって生成される生物発光の最大波長は約560 nmと生体組織に吸収されやすく、生体深部組織のイメージングに課題を残していました[2]。 Aka-HClとFlucの反応によって生成される最大発光波長677 nmの生物発光は(図1a)、D-luciferinよりも生体深部を高感度にイメージング可能であることをマウスのがん転移モデルなどを使って示しました (図1b)。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私自身は、生体光イメージングを使ったがん生物学の研究に従事しており[3, 4]、化学者ではありません。本研究論文の共著者である、発光基質の有機合成を専門に研究している電気通信大学の牧昌次郎先生と岩野智さんとは、2013年頃に知り合いました。当時、牧グループは、近赤外発光基質の合成に成功しており[5]、この発光基質の生体発光イメージングにおける有用性評価を細胞や動物を使って私が担当するという形で共同研究が始まりました。細胞や動物での評価を始めると、生体内環境における合成基質の興味深い特性が幾つか見つかり、今回の論文でも重要な論点になりました。これらについて考察する過程で、私自身、酵素・基質反応や発光基質の生体内動態などに理解が深まり、生物発光イメージングについてより多面的視点を持てるようになったことが大きな収穫です。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

材料の持っている可能性をどのように評価してアピールするかという点です。私自身、共同研究を始めた当初は合成発光基質の評価方法などに関する知識が余りなかったので、過去の文献をくまなく調査して、必要な実験系を選び出すところから始めました。結果として、それほど特殊な実験を行ったわけではありませんが、Aka-HClの特性を多角的に評価できたと考えています。

 

Q4. 将来は化学とどう関わっていきたいですか?

化学は今後、生物・医学研究をより高度に発展させる上で益々重要な学問になるかと思います。化学者とより深い対話ができるように、化学の素養を少しでも身につけることが私の当面の目標です。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

異分野間での共同研究は、ユニークな研究テーマを探しだす良い機会になるかと思います。皆さん、共同研究を通して新しい世界を目指しましょう!

 

関連文献

  1. A. Paley and J. A. Prescher, Bioluminescence: a versatile technique for imaging cellular and molecular features. Med. Chem. Commun. 2014, 5, 255-267.
  2. T. Adams Jr. and S. C. Miller, Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr. Opin. Chem. Biol. 2014, 21, 112-120.
  3. Kuchimaru et. al., Bone resorption facilities osteoblastic bone metastatic colonization by cooperation of insulin-growth factor and hypoxia. Cancer Sci. 2014, 105, 553-559.
  4. Kuchimaru et. al., In vivo imaging of HIF-active tumors by an oxygen-dependent degradation probe with an interchangeable labeling system. PLoS ONE, 2010, 5, e15736.
  5. Iwano et. al. Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron 2013, 69, 3847-3856.

関連リンク

研究者の略歴

kuchimaru口丸 高弘 (くちまる たかひろ)

所属: 東京工業大学生命理工学院 近藤科江研究室 助教

研究テーマ: 生体光イメージング、がん生物学

経歴: 1980年兵庫県生まれ。2009年3月大阪大学工学研究科電気電子工学専攻博士後期課程修了、博士 (工学)取得 (飯田敏行研究室)。同年4月京都大学医学研究科特任研究員 (CKプロジェクト)。その後、2010年5月より東京工業大学近藤科江研究室で、科研費研究員、JSPS特別研究員を経て、2013年2月より現職。

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Carl Boschの人生 その4
  2. 概日リズムを司る天然変性転写因子の阻害剤開発に成功
  3. 共有結合性リガンドを有するタンパク質の網羅的探索法
  4. 有機の王冠
  5. 「一家に1枚」ポスターの企画募集
  6. アメリカで Ph. D. を取る –希望研究室にメールを送るの巻…
  7. 論文執筆で気をつけたいこと20(2)
  8. 高分解能顕微鏡の進展:化学結合・電子軌道の観測から、元素種の特定…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ピナー ピリミジン合成 Pinner Pyrimidine Synthesis
  2. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  3. 窒化ガリウムの低コスト結晶製造装置を開発
  4. 低分子ゲル化剤の特性・活用と、ゲル化・増粘の基礎【終了】
  5. サリドマイド、がん治療薬に
  6. サクセナ・エヴァンス還元 Saksena-Evans Reduction
  7. スコット・ミラー Scott J. Miller
  8. START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  9. 【書籍】「ルールを変える思考法」から化学的ビジネス理論を学ぶ
  10. カリカリベーコンはどうして美味しいにおいなの?

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!

第 296 回のスポットライトリサーチは、東京大学塩谷研究室で博士号を取得され、現在は京都大学寺西研…

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、日本在住の化…

【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)

<内容>ご好評につき、先月と同じ内容のウェブセミナーを開催!事業・開発課題の一ソリュ…

銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

Tshozoです。先日ケムステスタッフの方が気になる関連論文を紹介されていましたので書くこととしまし…

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

Chem-Station Twitter

PAGE TOP