[スポンサーリンク]

スポットライトリサーチ

生体深部イメージングに有効な近赤外発光分子の開発

[スポンサーリンク]

第48回のスポットライトリサーチは、東京工業大学 生命理工学院・口丸高弘 助教にお願いしました。

口丸先生の属する近藤研究室では、とりわけがん組織に特徴的な微小環境のバイオイメージング法の開発を一つの柱として取り組んでいます。今回紹介する成果は、問題点の一つだった、蛍光分子の長波長化を達成し、それが実際に深部イメージングに有効であることを実証したという内容になります。プレスリリースおよび論文として公開されたことを機に、紹介させて頂く運びとなりました。

“A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging”
Kuchimaru, T.; Iwano, S.; Kiyama, M.; Mitsumata, S.; Kadonosono, T.; Niwa, H.; Maki, S.; Kizaka-Kondoh, S. Nat. Commun. 2016, 7, 11856. doi:10.1038/ncomms11856

研究室を主宰されている近藤科江 教授は、口丸先生をこう評しておられます。

口丸さんは、大学・大学院で量子工学を専攻し、X線顕微鏡を組み立てる研究をしていました。しかし、X線顕微鏡で観る対象である細胞に興味をもち、生物をほぼ独学で習得し、現在は、工学・生物学・医学の境界領域の研究に取り組んでいます。好奇心・探求心が彼の研究を、より大きく、深いものにしています。これからの成長が楽しみです。

それではいつも通り、現場のお話を伺ってみました。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

生物発光イメージングの重要な課題であった発光波長の長波長化を達成し、生体深部組織の高感度イメージングを可能にする実用的な合成基質AkaLumine-HCl (Aka-HCl)を報告しました。

生物発光イメージングは、バックグラウンドシグナルが非常に小さく、生体組織や小動物の非侵襲イメージングにおいて、蛍光イメージングよりも高感度に生命現象を可視化できます[1]。しかし、現在、標準的に用いられているホタルルシフェラーゼ (Fluc)とその天然基質のD-luciferinによって生成される生物発光の最大波長は約560 nmと生体組織に吸収されやすく、生体深部組織のイメージングに課題を残していました[2]。 Aka-HClとFlucの反応によって生成される最大発光波長677 nmの生物発光は(図1a)、D-luciferinよりも生体深部を高感度にイメージング可能であることをマウスのがん転移モデルなどを使って示しました (図1b)。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私自身は、生体光イメージングを使ったがん生物学の研究に従事しており[3, 4]、化学者ではありません。本研究論文の共著者である、発光基質の有機合成を専門に研究している電気通信大学の牧昌次郎先生と岩野智さんとは、2013年頃に知り合いました。当時、牧グループは、近赤外発光基質の合成に成功しており[5]、この発光基質の生体発光イメージングにおける有用性評価を細胞や動物を使って私が担当するという形で共同研究が始まりました。細胞や動物での評価を始めると、生体内環境における合成基質の興味深い特性が幾つか見つかり、今回の論文でも重要な論点になりました。これらについて考察する過程で、私自身、酵素・基質反応や発光基質の生体内動態などに理解が深まり、生物発光イメージングについてより多面的視点を持てるようになったことが大きな収穫です。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

材料の持っている可能性をどのように評価してアピールするかという点です。私自身、共同研究を始めた当初は合成発光基質の評価方法などに関する知識が余りなかったので、過去の文献をくまなく調査して、必要な実験系を選び出すところから始めました。結果として、それほど特殊な実験を行ったわけではありませんが、Aka-HClの特性を多角的に評価できたと考えています。

 

Q4. 将来は化学とどう関わっていきたいですか?

化学は今後、生物・医学研究をより高度に発展させる上で益々重要な学問になるかと思います。化学者とより深い対話ができるように、化学の素養を少しでも身につけることが私の当面の目標です。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

異分野間での共同研究は、ユニークな研究テーマを探しだす良い機会になるかと思います。皆さん、共同研究を通して新しい世界を目指しましょう!

 

関連文献

  1. A. Paley and J. A. Prescher, Bioluminescence: a versatile technique for imaging cellular and molecular features. Med. Chem. Commun. 2014, 5, 255-267.
  2. T. Adams Jr. and S. C. Miller, Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr. Opin. Chem. Biol. 2014, 21, 112-120.
  3. Kuchimaru et. al., Bone resorption facilities osteoblastic bone metastatic colonization by cooperation of insulin-growth factor and hypoxia. Cancer Sci. 2014, 105, 553-559.
  4. Kuchimaru et. al., In vivo imaging of HIF-active tumors by an oxygen-dependent degradation probe with an interchangeable labeling system. PLoS ONE, 2010, 5, e15736.
  5. Iwano et. al. Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron 2013, 69, 3847-3856.

関連リンク

研究者の略歴

kuchimaru口丸 高弘 (くちまる たかひろ)

所属: 東京工業大学生命理工学院 近藤科江研究室 助教

研究テーマ: 生体光イメージング、がん生物学

経歴: 1980年兵庫県生まれ。2009年3月大阪大学工学研究科電気電子工学専攻博士後期課程修了、博士 (工学)取得 (飯田敏行研究室)。同年4月京都大学医学研究科特任研究員 (CKプロジェクト)。その後、2010年5月より東京工業大学近藤科江研究室で、科研費研究員、JSPS特別研究員を経て、2013年2月より現職。

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. NMRの化学シフト値予測の実力はいかに
  2. 天然階段状分子の人工合成に成功
  3. マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究…
  4. カルコゲン結合でロジウム二核錯体の構造を制御する!
  5. クリック反応に有用なジベンゾアザシクロオクチンの高効率合成法を開…
  6. 金属イオン認識と配位子交換の順序を切替えるホスト分子
  7. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  8. 有機合成で発生する熱量はどのくらい?EasyMax HFCal

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎
  2. 元素手帳2022
  3. カルロス・シャーガスのはなし ーシャーガス病の発見者ー
  4. 第53回―「革命的な有機触媒を開発する」Ben List教授
  5. 生体外の環境でタンパクを守るランダムポリマーの設計
  6. 小さなフッ素をどうつまむのか
  7. キラルアニオン相間移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  8. カルベン触媒によるα-ハロ-α,β-不飽和アルデヒドのエステル化反応
  9. スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す
  10. rhodomolleins XX と XXIIの全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

理研の研究者が考える“実験ロボット”の未来とは?

bergです。昨今、人工知能(AI)が社会を賑わせており、関連のトピックスを耳にしない日はないといっ…

【9月開催】 【第二期 マツモトファインケミカル技術セミナー開催】有機金属化合物 オルガチックスを用いたゾルゲル法とプロセス制御ノウハウ①

セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチック…

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP