[スポンサーリンク]

スポットライトリサーチ

生体深部イメージングに有効な近赤外発光分子の開発

[スポンサーリンク]

第48回のスポットライトリサーチは、東京工業大学 生命理工学院・口丸高弘 助教にお願いしました。

口丸先生の属する近藤研究室では、とりわけがん組織に特徴的な微小環境のバイオイメージング法の開発を一つの柱として取り組んでいます。今回紹介する成果は、問題点の一つだった、蛍光分子の長波長化を達成し、それが実際に深部イメージングに有効であることを実証したという内容になります。プレスリリースおよび論文として公開されたことを機に、紹介させて頂く運びとなりました。

“A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging”
Kuchimaru, T.; Iwano, S.; Kiyama, M.; Mitsumata, S.; Kadonosono, T.; Niwa, H.; Maki, S.; Kizaka-Kondoh, S. Nat. Commun. 2016, 7, 11856. doi:10.1038/ncomms11856

研究室を主宰されている近藤科江 教授は、口丸先生をこう評しておられます。

口丸さんは、大学・大学院で量子工学を専攻し、X線顕微鏡を組み立てる研究をしていました。しかし、X線顕微鏡で観る対象である細胞に興味をもち、生物をほぼ独学で習得し、現在は、工学・生物学・医学の境界領域の研究に取り組んでいます。好奇心・探求心が彼の研究を、より大きく、深いものにしています。これからの成長が楽しみです。

それではいつも通り、現場のお話を伺ってみました。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

生物発光イメージングの重要な課題であった発光波長の長波長化を達成し、生体深部組織の高感度イメージングを可能にする実用的な合成基質AkaLumine-HCl (Aka-HCl)を報告しました。

生物発光イメージングは、バックグラウンドシグナルが非常に小さく、生体組織や小動物の非侵襲イメージングにおいて、蛍光イメージングよりも高感度に生命現象を可視化できます[1]。しかし、現在、標準的に用いられているホタルルシフェラーゼ (Fluc)とその天然基質のD-luciferinによって生成される生物発光の最大波長は約560 nmと生体組織に吸収されやすく、生体深部組織のイメージングに課題を残していました[2]。 Aka-HClとFlucの反応によって生成される最大発光波長677 nmの生物発光は(図1a)、D-luciferinよりも生体深部を高感度にイメージング可能であることをマウスのがん転移モデルなどを使って示しました (図1b)。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

図1 (a) Aka-HClとD-luciferinの化学構造とFlucとの反応によって生成によってされる生物発光 (BL)スペクトル。(b) Flucを発現するがん細胞によって形成されたマウス肺転移の検出感度の比較。

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私自身は、生体光イメージングを使ったがん生物学の研究に従事しており[3, 4]、化学者ではありません。本研究論文の共著者である、発光基質の有機合成を専門に研究している電気通信大学の牧昌次郎先生と岩野智さんとは、2013年頃に知り合いました。当時、牧グループは、近赤外発光基質の合成に成功しており[5]、この発光基質の生体発光イメージングにおける有用性評価を細胞や動物を使って私が担当するという形で共同研究が始まりました。細胞や動物での評価を始めると、生体内環境における合成基質の興味深い特性が幾つか見つかり、今回の論文でも重要な論点になりました。これらについて考察する過程で、私自身、酵素・基質反応や発光基質の生体内動態などに理解が深まり、生物発光イメージングについてより多面的視点を持てるようになったことが大きな収穫です。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

材料の持っている可能性をどのように評価してアピールするかという点です。私自身、共同研究を始めた当初は合成発光基質の評価方法などに関する知識が余りなかったので、過去の文献をくまなく調査して、必要な実験系を選び出すところから始めました。結果として、それほど特殊な実験を行ったわけではありませんが、Aka-HClの特性を多角的に評価できたと考えています。

 

Q4. 将来は化学とどう関わっていきたいですか?

化学は今後、生物・医学研究をより高度に発展させる上で益々重要な学問になるかと思います。化学者とより深い対話ができるように、化学の素養を少しでも身につけることが私の当面の目標です。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

異分野間での共同研究は、ユニークな研究テーマを探しだす良い機会になるかと思います。皆さん、共同研究を通して新しい世界を目指しましょう!

 

関連文献

  1. A. Paley and J. A. Prescher, Bioluminescence: a versatile technique for imaging cellular and molecular features. Med. Chem. Commun. 2014, 5, 255-267.
  2. T. Adams Jr. and S. C. Miller, Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr. Opin. Chem. Biol. 2014, 21, 112-120.
  3. Kuchimaru et. al., Bone resorption facilities osteoblastic bone metastatic colonization by cooperation of insulin-growth factor and hypoxia. Cancer Sci. 2014, 105, 553-559.
  4. Kuchimaru et. al., In vivo imaging of HIF-active tumors by an oxygen-dependent degradation probe with an interchangeable labeling system. PLoS ONE, 2010, 5, e15736.
  5. Iwano et. al. Development of simple firefly luciferin analogs emitting blue, green, red, and near-infrared biological window light. Tetrahedron 2013, 69, 3847-3856.

関連リンク

研究者の略歴

kuchimaru口丸 高弘 (くちまる たかひろ)

所属: 東京工業大学生命理工学院 近藤科江研究室 助教

研究テーマ: 生体光イメージング、がん生物学

経歴: 1980年兵庫県生まれ。2009年3月大阪大学工学研究科電気電子工学専攻博士後期課程修了、博士 (工学)取得 (飯田敏行研究室)。同年4月京都大学医学研究科特任研究員 (CKプロジェクト)。その後、2010年5月より東京工業大学近藤科江研究室で、科研費研究員、JSPS特別研究員を経て、2013年2月より現職。

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 治療応用を目指した生体適合型金属触媒:① 細胞内基質を標的とする…
  2. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級…
  3. 最終面接で内定をもらう人の共通点について考えてみた
  4. オペレーションはイノベーションの夢を見るか? その3+まとめ
  5. メールのスマートな送り方
  6. ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成
  7. 遷移金属を用いない脂肪族C-H結合のホウ素化
  8. フライパンの空焚きで有毒ガス発生!?

注目情報

ピックアップ記事

  1. コーリー・ウィンターオレフィン合成 Corey-Winter Olefin Synthesis
  2. 「芳香族共役ポリマーに学ぶ」ーブリストル大学Faul研より
  3. ChemDraw for iPadを先取りレビュー!
  4. 二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング
  5. 2016年化学10大ニュース
  6. フェントン反応 Fenton Reaction
  7. 塩にまつわるよもやま話
  8. 化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~
  9. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  10. 世界の最新科学ニュース雑誌を日本語で読めるーNature ダイジェストまとめ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

可視光でスイッチON!C(sp3)–Hにヨウ素をシャトル!

不活性なC(sp3)–H結合のヨウ素化反応が報告された。シャトル触媒と光励起Pdの概念を融合させ、ヨ…

化学研究者がAIを味方につける時代―専門性を武器にキャリアを広げる方法―

化学の専門性を活かしながら、これからの時代に求められるスキルを身につけたい——。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP