[スポンサーリンク]

化学者のつぶやき

安定な環状ケトンのC–C結合を組み替える

シクロペンタノンの触媒的C–C結合活性化と続くアリール基のC–Hメタル化による結合変換反応が報告された。本手法は反応条件の調整でシクロヘキサノンにも適用できる。

遷移金属による環状ケトンのC–C変換反応

環状ケトンのC–C結合の切断を伴う新規C–C結合形成反応は、画期的な合成戦略を切り拓く可能性をもつ。C­–C結合の高い活性化障壁を如何に乗り越えるかが最大の鍵となる。これまで遷移金属触媒を用いて、主に以下の二つの手法が取られてきた。

一つは、1994年の伊藤・村上らが報告したように、小員環ケトンがもつ歪み解消エネルギー(RSE: Ring Strain Energy)を駆動力とするものである(図1A)[1]。特に高い歪み解消エネルギーをもつシクロブタン環(27.0 kcal/mol)で効率よく反応が進行する。しかし、この手法は高い歪み解消エネルギーをもつ環状ケトン限定的であり、より大きな環状ケトンへの適用は難しい。実際、伊藤、村上らの報告中でシクロペンタノンのC–C結合変換は成されているものの、金属を当量使用する、反応時間が長いといった課題がある(図1B)[1]

二つ目の手法として、より大きな環状ケトンに対しては2001年にJunらが見出した、配向基を用いたC–C結合切断法が知られる(図1C)。2-アミノピリジン類を共触媒に用いて系中でケチミンを生成し、そのピリジン環が配向基として作用することで金属触媒へのC–C結合酸化的付加が促進される[2]。この方法は中員環以上の環状ケトンのC–C結合変換に有効だが、シクロペンタノン、シクロヘキサノンには適用できない。

図1. 遷移金属を用いた環状ケトンのC–C変換反応の代表例

 

今回シカゴ大学のDongらはロジウム触媒と2-アミノピリジン共触媒を用いることでシクロペンタノンの効率的なC–C結合変換反応によるα-テトラロン合成法の開発に成功したので紹介する(図1D)。本反応は、反応条件の調整によりシクロヘキサノンのC–C結合変換にも適用できる。

* “Catalytic Activation of Carbon–carbon Bonds in Cyclopentanones”

Xia, Y.; Lu, G/; Liu, P.; Dong, G. Nature, 2016539, 546 DOI: 10.1038/nature19849

論文著者の紹介

研究者:Guangbin Dong
研究者の経歴:
-2003 B.S., Peking University, China (Prof. Zhen Yang, Prof. Jiahua Chen)
2004-2009 Ph.D, Stanford University, California (Prof. Barry M. Trost)
2009-2011 Camille Henry Dreyfus Postdoctoral Fellow, California Institute of Technology, California (Prof. Robert H. Grubbs)
2011-2016 Assistant Prof. at University of Texas at Austin, Texas
2016 Prof. at University of Texas at Austin
2016- Prof. at University of Chicago, Illinois
研究内容:C–H, C–C結合活性化反応の開発、天然物合成

論文の概要

Dongらはシクロペンタノン1に対しRh/IMes触媒と2-アミノピリジンを共触媒に用い、C–C結合切断を伴うα-テトラロン2の合成に成功した(図2A)。配位子をより嵩高いIPrへ、共触媒を2-アミノ-6-ピコリンにすることでシクロヘキサノン3のC–C結合変換も可能とした(図2B)。

歪み解消エネルギーの利用が困難なシクロペンタノン、シクロヘキサノンC–C結合切断の成功の要因は何であろうか。それは上述の配向基を用いる手法(アミノピリジンの使用)とC3位にアリール基を導入したことである(図2C)。Junらと同様、アミノピリジンを用いケトンをケチミンへ変換し、ピリジン環が配向基として働くことでロジウムへのC–C結合酸化的付加が促進される。しかし、シクロペンタノンの場合はこのC–C結合切断が可逆的であり、しかも逆反応が優先してしまう。この平衡を生成系に傾けるのを可能にしたのがC3位に導入したアリール基である。C–C結合活性化中間体6に対しC3位のアリール基が分子内C­­–Hロジウム化することでローダサイクル中間体7の形成が可能となる。続く還元的脱離と加水分解によりα-テトラロンが生成する。このような巧みな反応設計が安定なシクロペンタノン、シクロヘキサノンC–C結合の変換反応を可能にしている。

図2. Rh触媒によるシクロペンタノン、シクロヘキサノンのC–C変換反応

参考文献

関連書籍

The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ぼっち学会参加の極意
  2. 【書籍】化学探偵Mr.キュリー3
  3. 最期の病:悪液質
  4. 分子があつまる力を利用したオリゴマーのプログラム合成法
  5. 【書籍】化学探偵Mr.キュリー5
  6. 文献検索サイトをもっと便利に:X-MOLをレビュー
  7. 質量分析で使うRMS errorって?
  8. 化学の力で迷路を解く!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第6回慶應有機化学若手シンポジウム
  2. イヴァン・フック Ivan Huc
  3. ポール・アリヴィサトス Paul Alivisatos
  4. PACIFICHEM2010に参加してきました!④
  5. ノーベル化学賞・受賞者一覧
  6. シャウ ピリミジン合成 Shaw Pyrimidine Synthesis
  7. エステルからエーテルをつくる脱一酸化炭素金属触媒
  8. ベンゼン環記法マニアックス
  9. ReadCubeを使い倒す(3)~SmartCiteでラクラク引用~
  10. 緑色蛍光タンパク /Green Fluorescent Protein (GFP)

関連商品

注目情報

注目情報

最新記事

ライトケミカル工業株式会社ってどんな会社?

ライトケミカル工業は自社製品を持たず、研究開発もしない、更に営業マンもいない独立資本の受託専門会社(…

クラリベイト・アナリティクスが「引用栄誉賞2018」を発表

9月20日、クラリベイト・アナリティクス社から2018年の引用栄誉賞が発表されました。本賞は…

AIで世界最高精度のNMR化学シフト予測を達成

理化学研究所(理研)環境資源科学研究センター環境代謝分析研究チームの菊地淳チームリーダー、伊藤研悟特…

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視…

ケムステ版・ノーベル化学賞候補者リスト【2018年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある化学者」をリストアップしていま…

巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明

第161回目のスポットライトリサーチは、早田敦 (はやた あつし)さんにお願いしました。早田…

PAGE TOP