[スポンサーリンク]

化学者のつぶやき

安定な環状ケトンのC–C結合を組み替える

[スポンサーリンク]

シクロペンタノンの触媒的C–C結合活性化と続くアリール基のC–Hメタル化による結合変換反応が報告された。本手法は反応条件の調整でシクロヘキサノンにも適用できる。

遷移金属による環状ケトンのC–C変換反応

環状ケトンのC–C結合の切断を伴う新規C–C結合形成反応は、画期的な合成戦略を切り拓く可能性をもつ。C­–C結合の高い活性化障壁を如何に乗り越えるかが最大の鍵となる。これまで遷移金属触媒を用いて、主に以下の二つの手法が取られてきた。

一つは、1994年の伊藤・村上らが報告したように、小員環ケトンがもつ歪み解消エネルギー(RSE: Ring Strain Energy)を駆動力とするものである(図1A)[1]。特に高い歪み解消エネルギーをもつシクロブタン環(27.0 kcal/mol)で効率よく反応が進行する。しかし、この手法は高い歪み解消エネルギーをもつ環状ケトン限定的であり、より大きな環状ケトンへの適用は難しい。実際、伊藤、村上らの報告中でシクロペンタノンのC–C結合変換は成されているものの、金属を当量使用する、反応時間が長いといった課題がある(図1B)[1]

二つ目の手法として、より大きな環状ケトンに対しては2001年にJunらが見出した、配向基を用いたC–C結合切断法が知られる(図1C)。2-アミノピリジン類を共触媒に用いて系中でケチミンを生成し、そのピリジン環が配向基として作用することで金属触媒へのC–C結合酸化的付加が促進される[2]。この方法は中員環以上の環状ケトンのC–C結合変換に有効だが、シクロペンタノン、シクロヘキサノンには適用できない。

図1. 遷移金属を用いた環状ケトンのC–C変換反応の代表例

 

今回シカゴ大学のDongらはロジウム触媒と2-アミノピリジン共触媒を用いることでシクロペンタノンの効率的なC–C結合変換反応によるα-テトラロン合成法の開発に成功したので紹介する(図1D)。本反応は、反応条件の調整によりシクロヘキサノンのC–C結合変換にも適用できる。

* “Catalytic Activation of Carbon–carbon Bonds in Cyclopentanones”

Xia, Y.; Lu, G/; Liu, P.; Dong, G. Nature, 2016539, 546 DOI: 10.1038/nature19849

論文著者の紹介

研究者:Guangbin Dong
研究者の経歴:
-2003 B.S., Peking University, China (Prof. Zhen Yang, Prof. Jiahua Chen)
2004-2009 Ph.D, Stanford University, California (Prof. Barry M. Trost)
2009-2011 Camille Henry Dreyfus Postdoctoral Fellow, California Institute of Technology, California (Prof. Robert H. Grubbs)
2011-2016 Assistant Prof. at University of Texas at Austin, Texas
2016 Prof. at University of Texas at Austin
2016- Prof. at University of Chicago, Illinois
研究内容:C–H, C–C結合活性化反応の開発、天然物合成

論文の概要

Dongらはシクロペンタノン1に対しRh/IMes触媒と2-アミノピリジンを共触媒に用い、C–C結合切断を伴うα-テトラロン2の合成に成功した(図2A)。配位子をより嵩高いIPrへ、共触媒を2-アミノ-6-ピコリンにすることでシクロヘキサノン3のC–C結合変換も可能とした(図2B)。

歪み解消エネルギーの利用が困難なシクロペンタノン、シクロヘキサノンC–C結合切断の成功の要因は何であろうか。それは上述の配向基を用いる手法(アミノピリジンの使用)とC3位にアリール基を導入したことである(図2C)。Junらと同様、アミノピリジンを用いケトンをケチミンへ変換し、ピリジン環が配向基として働くことでロジウムへのC–C結合酸化的付加が促進される。しかし、シクロペンタノンの場合はこのC–C結合切断が可逆的であり、しかも逆反応が優先してしまう。この平衡を生成系に傾けるのを可能にしたのがC3位に導入したアリール基である。C–C結合活性化中間体6に対しC3位のアリール基が分子内C­­–Hロジウム化することでローダサイクル中間体7の形成が可能となる。続く還元的脱離と加水分解によりα-テトラロンが生成する。このような巧みな反応設計が安定なシクロペンタノン、シクロヘキサノンC–C結合の変換反応を可能にしている。

図2. Rh触媒によるシクロペンタノン、シクロヘキサノンのC–C変換反応

参考文献

関連書籍

[amazonjs asin=”B015Q0JLBC” locale=”JP” title=”Cleavage of Carbon-Carbon Single Bonds by Transition Metals”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有望な若手研究者を発掘ー研究者探索サービス「JDream Exp…
  2. 外部の分析機器を活用する方法
  3. オゾンと光だけでアジピン酸をつくる
  4. 細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドがで…
  5. ダニエル レオノリ Daniele Leonori
  6. 有機合成化学協会誌2025年12月号:ホウ素二置換カルベン・不斉…
  7. 顕微鏡で化学反応を見る!?
  8. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスのためのデータサイエンティスト入門
  2. 次世代シーケンサー活用術〜トップランナーの最新研究事例に学ぶ〜
  3. ニック・ホロニアック Nicholas Holonyak, Jr.
  4. H・ブラウン氏死去/米のノーベル化学賞受賞者
  5. Ns基とNos基とDNs基
  6. 浄水場から検出されたホルムアルデヒドの原因物質を特定
  7. シャープレス不斉アミノヒドロキシル化 Sharpless Asyemmtric Aminohydroxylation (SharplessAA)
  8. 赤絵磁器を彩る絵具:その特性解明と改良
  9. アカデミアケミストがパパ育休を取得しました!
  10. Dead Endを回避せよ!「全合成・極限からの一手」⑦(解答編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP