[スポンサーリンク]

化学者のつぶやき

キラルLewis酸触媒による“3員環経由4員環”合成

[スポンサーリンク]

キラルなルイス酸触媒を用いた新規シクロブタノン不斉合成法が開発された。高いジアステレオ/エナンチオ選択性でドミノシクロプロパン化/セミピナコール転位が進行する。

触媒的不斉シクロブタノン合成

シクロブタン誘導体は、医薬品及び天然物に頻出する骨格である。特にシクロブタノンは環ひずみを利用した開環及び環拡大反応により様々な化合物へ合成できる有用なビルディングブロックであり、近年この骨格の触媒的不斉合成法の開発がいくつか成されている。例えば、最近Dongらはコバルトを触媒とする分子内不斉ヒドロアシル化を用いたシクロブタノンの合成を報告した(1A)[1]。一方で、シクロプロパノール誘導体の触媒的セミピナコール転位によるシクロブタノン合成法がいくつか報告されている。Alexakisらはキラルリン酸(CPA)触媒存在下、アルケニルシクロプロパノールのセミピナコール転位によるβハロスピロシクロブタノン合成を開発している(1B)[2]。不斉遷移金属触媒を用いた例としてはTosteらが金を、Trostらがパラジウムを触媒としてアルケニルシクロプロパノールのセミピナコール転位をそれぞれ報告している(1C)[3]。また、酸、塩基、熱によるカルボニル部位に対するセミピナコール転位によるシクロブタノン合成も報告されているが、エナンチオ選択的な例はない(1D)[4]

 今回、Ryu教授らはLewis酸触媒にキラルオキサボロリジニウムイオン(COBI)を用いて、αシリルオキシアクロレインとジアゾエステルとの反応で、連続的にシクロプロパン化/セミピナコール転位を起こし、高ジアステレオ/エナンチオ選択的に隣接した2つの不斉中心をもつシクロブタノンの合成に成功したので紹介する(1E)

図1.触媒的不斉シクロブタノン合成

Asymmetric Synthesis of Cyclobutanone via Lewis Acid Catalyzed Tandem Cyclopropanation/Semipinacol Rearrangement

Shim, S. Y.; Choi, Y.; Ryu, D. H. J. Am. Chem. Soc.2018, 140, 11184−11188. DOI: 10.1021/jacs.8b06835

論文著者の紹介

研究者:Do Hyun Ryu

研究者の経歴:

1993-1997 Ph. D., Department of Chemistry, KAIST (Prof. Sung Ho Kang)
1997-2001 Associate Research Scientist, SK Chemicals, Life Science Institute
2000-2002 Postdoc Fellow, Harvard Medical School (Prof. Robert R. Rando)
2002-2005 Postdoc Fellow, Harvard University (Prof. E. J. Corey)
2005-2009Assistant Professor, Sungkyunkwan University
2009-2015Associate Professor, Sungkyunkwan University
2015- Professor, Sungkyunkwan University

研究内容:触媒開発、不斉反応開発、全合成研究、ケミカルバイオロジー

論文の概要

著者らはこれまでに、COBI触媒を用いた不飽和アルデヒドとジアゾエステルとの不斉シクロプロパン化を報告している[5]。今回、αシリルオキシアクロレインに対して同様の手法を用いて1-ホルミル-1-シリルオキシシクロプロパン1が生成すれば、連続的にセミピナコール転位が起こりシクロブタノン2が得られると考えた。実際に想定どおりに反応が進行し、広範なジアゾエステルが適用可能であった(2A)。ハロゲン、シアノなどの官能基をもつアリール基、アルキル基、嵩高いエステルをもつジアゾエステルを用いても、高収率、高ジアステレオ/エナンチオ選択的に反応が進行する。

 著者らは種々の対照実験の結果から、遷移状態4を経由してシクロブタノン2が生成する機構を提唱した(2B)。まず、COBI触媒が不飽和アルデヒドのカルボニル部位に配位することで面選択的にジアゾエステルの1,4-付加が起こり、続くシクロプロパン化によって4が生成する。さらにCOBI触媒によって活性化されているカルボニル部位に対してセミピナコール転位が起こり、シリル移動を経て目的のシクロブタノン2が得られる。

 以上、連続した不斉中心をもつ新たなシクロブタノン合成法が報告された。本手法は今後、様々な複雑化合物の有用な合成中間体としての応用が期待できる。

図2. (A)基質適用範囲、(B)遷移状態モデル

参考文献

  1. Kim, D. K.; Riedel, J.; Kim, R. S.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 10208. DOI:10.1021/jacs.7b05327
  2. Romanov-Michailidis,F.;Gueńeé,L.;Alexakis, Angew. Chem., Int. Ed. 2013, 52, 9266. DOI: 10.1002/anie.201303527
  3. [a]Kleinbeck, F.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 9178. DOI: 10.1021/ja904055z[b] Trost, B. M.; Yasukata, T.J. Am. Chem. Soc.2001, 123, 7162. DOI: 10.1021/ja010504c
  4. [a]Paukstelis, J. V.; Kao, J. L. JAm. Chem. Soc. 1972, 94, 4783. 10.1021/ja00768a086[b] Appendino, G.; Bertolino, A.; Minassi, A.; Annunziata, R.; Szallasi, A.; de Petrocellis, L.; Di Marzo, V. Eur.J. Org. Chem. 2004, 2004, 3413. DOI: 10.1002/ejoc.200400122
  5. Gao, L.; Hwang, G.-S.; Ryu, D. H. J. Am. Chem. Soc. 2011,133, 20708. DOI: 10.1021/ja209270e

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌3月号:鉄-インジウム錯体・酸化的ハロゲン化反…
  2. 不斉をあざ(Aza)やかに(Ni)制御!Aza-Heck環化/還…
  3. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級…
  4. 小スケール反応での注意点 失敗しないための処方箋
  5. 提唱から60年。温和な条件下で反芳香族イソフロリンの合成に成功
  6. キラルな八員環合成におすすめのアイロン
  7. ケムステイブニングミキサー2015へ参加しよう!
  8. 【追悼企画】鋭才有機合成化学者ーProf. David Gin

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  2. ヒト遺伝子の ヒット・ランキング
  3. 蛍光異方性 Fluorescence Anisotropy
  4. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  5. 堀場氏、分析化学の”殿堂”入り
  6. 構造化学の研究を先導する100万件のビッグデータ
  7. クロタミトンのはなし 古くて新しいその機構
  8. 酵母還元 Reduction with Yeast
  9. 「炭素-炭素結合を切って組み替える合成」テキサス大学オースティン校・Dong研より
  10. Communications Chemistry創刊!:ネイチャー・リサーチ提供の新しい化学ジャーナル

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

有機合成化学協会誌2024年6月号:四塩化チタン・選択的フッ素化・環境調和型反応・インデン・インダセン・環状ペプチド

有機合成化学協会が発行する有機合成化学協会誌、2024年6月号がオンライン公開されています。…

【6月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスを用いた架橋剤としての利用(溶剤系)

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/06/18 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

N-オキシドの性質と創薬における活用

N-オキシドは一部の天然物に含まれ、食品・医薬品などの代謝物にも見られるほか、医…

未来を切り拓く創薬DX:多角的な視点から探る最新トレンド

申込みはこちら次世代の創薬研究をリードするために、デジタルトランスフォーメーション(DX…

ファラデーのつくった世界!:−ロウソクの科学が歴史を変えた

こんにちは、Spectol21です!ノーベル賞受賞の吉野彰先生が、吉野先生の研究者と…

接着系材料におけるmiHub活用事例とCSサポートのご紹介

開催日:2024/06/12 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

水素原子一個で強力な触媒をケージング ――アルツハイマー病関連のアミロイドを低分子で副作用を抑えて分解する――

第 619 回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学…

ミツバチに付くダニに効く化学物質の研究開発のはなし

今回は東京大学大学院有機化学研究室 滝川 浩郷先生、小倉 由資先生が主導されている研究内容につき…

化学結合の常識が変わる可能性!形成や切断よりも「回転」プロセスが実は難しい有機反応

第 617 回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 有機…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP