[スポンサーリンク]

一般的な話題

“秒”で分析 をあたりまえに―利便性が高まるSFC

[スポンサーリンク]

分析化学に携わったことのある方は、「超臨界流体クロマトグラフィー」、略して「SFC」のことをご存知なのではないかと思います。SFCは1960年代から分析例が報告されている“古株”なのですが、超臨界流体の特長を生かした高い分離能を期待されながら、適用範囲の狭さや再現性の問題から普及に至りませんでした。転機が訪れたのは1980年代後半のことで、カラム・装置・移動相の構成を改良し、上記の問題を解決できたのです。生まれ変わったSFCは特に欧米医薬企業で光学異性体分離に広く用いられ、現在、HPLCやGCに並ぶクロマトグラフィー法としてようやく認知されつつあります。

SFCを用いた光学異性体分離

欧米医薬企業がSFCを積極的に使いはじめたのは1990年代に入ってからといわれています。当時を振り返ると、新薬としての光学活性化合物の研究開発が盛んになり、薬理試験などにR/S両光学異性体の高純度試料が必要になったことや、創薬研究のスピードアップ、“グリーンケミストリー”への転換が叫ばれるようになっていました。SFCはこの解決策としてまさにうってつけだったのです。というのも…これは、クロマトグラムを見たほうが早いかもしれません。

図1:HPLCクロマトとSFCクロマトの比較

 

ひとつに、リテンションタイムが段違いに速いですね。ピークの分離も申し分ありません。SFC移動相の低粘度・高拡散性という特長がこのような素晴らしい分析結果をもたらしてくれます。

この比較はいわゆる「クロマト分取」でも同じであって、つまり、純粋な光学異性体サンプルが欲しければSFCでより手早く取得できる可能性があります。

図2:HPLC負荷クロマトとSFC負荷クロマトの比較

 

しかも移動相の主成分はCO2なので、HPLCより有機溶媒を使わないで済み、さらにSFC装置から出てきたフラクションは勝手にCO2が気化して濃縮される…分離だけでなく後処理に掛かる時間まで短縮できるのであれば、これを使わない手はありませんね。

“秒”で分析? SFCの本領

近年のHPLC装置、カラムはたいへん高性能化しており、分析のハイスループット化は目を見張るものがあります。とうぜんSFCもどんどん分析時間が短くなっており、ついにクロマトグラフの横軸を「分」ではなく「秒」にしたほうが良いクロマトが取れるようになってきました

図3: SFCのハイスループットクロマト

 

昔はペンレコーダーが少しずつクロマトグラムを描画していくのを緊張しながら見守っていたのですが、今でも分析終了までに次の試料の前処理に取り掛かったり、あるいは分析が終わるまでちょっと一服…なんてことをやっているわけですが、そんな時代も終わりに近づいているかもしれません。

キラル分離だけじゃない

ここまで光学異性体の分離例のみをご紹介してきましたが、もちろんSFCはこれ以外のさまざまな化合物を効率的に分離することができます。

まとめ

以上、分離例を挙げながらSFCの特徴・利点について述べてみました。分析の能率アップに悩んでいる方や、より高い分離能を求めている方はSFCの利用を検討してみてはいかがでしょうか。ところで余談ながら、はじめに「超臨界流体クロマトグラフィー」と書きましたが現在のSFC移動相は超臨界流体ではないという話があります。もともとSFCの移動相は超臨界CO2でしたが、現在の条件では保持調節のためにアルコールなどの有機溶媒を添加しているため、移動相の臨界温度は一般的なクロマト条件からかなり高く外れているのです。SFCは名前に偽りあり…ただ、これに代わる名称がいくつか提唱されているものの定着はしていません。SFCの第一人者となって、名前を後世に残すチャンスかも??

上述のカラムやSFC分析に関する詳しいお問い合わせやデモの依頼は以下を参照ください。

お問い合わせ

株式会社ダイセル CPIカンパニー 開発営業部

お問い合わせフォームはこちら 

本記事はダイセルCPIカンパニーの寄稿記事です。

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  2. 鉄錯体による触媒的窒素固定のおはなし-1
  3. アズレンの蒼い旅路
  4. ポンコツ博士の海外奮闘録⑪ 〜博士,データをとる〜
  5. 金属中心に不斉を持つオレフィンメタセシス触媒
  6. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合…
  7. STAP細胞問題から見えた市民と科学者の乖離ー後編
  8. ウーロン茶の中でも医薬品の化学合成が可能に

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 書籍「Topics in Current Chemistry」がジャーナルになるらしい
  2. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition
  3. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動化ライブラリ「RadonPy」の概要と使い方
  4. 有機合成化学協会誌2022年7月号:アニオン性相間移動触媒・触媒的分子内ヒドロ官能基化・酸化的クロスカップリング・エピジェネティクス複合体・新規リンコマイシン誘導体
  5. Nsアミン誘導体
  6. NIMSフォーラム 「未来のエネルギーをつむぐ新材料・新物質、ここに集結!」
  7. ウィルゲロット反応 Willgerodt Reaction
  8. オカモトが過去最高益を記録
  9. ビンゲル反応 Bingel Reaction
  10. 「薬草、信じて使うこと」=自分に合ったものを選ぶ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

クリック反応を用いて、機能性分子を持つイナミド類を自在合成!

第492 回のスポットライトリサーチは、岐阜薬科大学 合成薬品製造学研究室 (伊…

セライトのちょっとマニアックな話

セライト (Celite®) は Imerys Minerals, Inc. の登録…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP