[スポンサーリンク]

一般的な話題

“秒”で分析 をあたりまえに―利便性が高まるSFC

[スポンサーリンク]

分析化学に携わったことのある方は、「超臨界流体クロマトグラフィー」、略して「SFC」のことをご存知なのではないかと思います。SFCは1960年代から分析例が報告されている“古株”なのですが、超臨界流体の特長を生かした高い分離能を期待されながら、適用範囲の狭さや再現性の問題から普及に至りませんでした。転機が訪れたのは1980年代後半のことで、カラム・装置・移動相の構成を改良し、上記の問題を解決できたのです。生まれ変わったSFCは特に欧米医薬企業で光学異性体分離に広く用いられ、現在、HPLCやGCに並ぶクロマトグラフィー法としてようやく認知されつつあります。

SFCを用いた光学異性体分離

欧米医薬企業がSFCを積極的に使いはじめたのは1990年代に入ってからといわれています。当時を振り返ると、新薬としての光学活性化合物の研究開発が盛んになり、薬理試験などにR/S両光学異性体の高純度試料が必要になったことや、創薬研究のスピードアップ、“グリーンケミストリー”への転換が叫ばれるようになっていました。SFCはこの解決策としてまさにうってつけだったのです。というのも…これは、クロマトグラムを見たほうが早いかもしれません。

図1:HPLCクロマトとSFCクロマトの比較

 

ひとつに、リテンションタイムが段違いに速いですね。ピークの分離も申し分ありません。SFC移動相の低粘度・高拡散性という特長がこのような素晴らしい分析結果をもたらしてくれます。

この比較はいわゆる「クロマト分取」でも同じであって、つまり、純粋な光学異性体サンプルが欲しければSFCでより手早く取得できる可能性があります。

図2:HPLC負荷クロマトとSFC負荷クロマトの比較

 

しかも移動相の主成分はCO2なので、HPLCより有機溶媒を使わないで済み、さらにSFC装置から出てきたフラクションは勝手にCO2が気化して濃縮される…分離だけでなく後処理に掛かる時間まで短縮できるのであれば、これを使わない手はありませんね。

“秒”で分析? SFCの本領

近年のHPLC装置、カラムはたいへん高性能化しており、分析のハイスループット化は目を見張るものがあります。とうぜんSFCもどんどん分析時間が短くなっており、ついにクロマトグラフの横軸を「分」ではなく「秒」にしたほうが良いクロマトが取れるようになってきました

図3: SFCのハイスループットクロマト

 

昔はペンレコーダーが少しずつクロマトグラムを描画していくのを緊張しながら見守っていたのですが、今でも分析終了までに次の試料の前処理に取り掛かったり、あるいは分析が終わるまでちょっと一服…なんてことをやっているわけですが、そんな時代も終わりに近づいているかもしれません。

キラル分離だけじゃない

ここまで光学異性体の分離例のみをご紹介してきましたが、もちろんSFCはこれ以外のさまざまな化合物を効率的に分離することができます。

まとめ

以上、分離例を挙げながらSFCの特徴・利点について述べてみました。分析の能率アップに悩んでいる方や、より高い分離能を求めている方はSFCの利用を検討してみてはいかがでしょうか。ところで余談ながら、はじめに「超臨界流体クロマトグラフィー」と書きましたが現在のSFC移動相は超臨界流体ではないという話があります。もともとSFCの移動相は超臨界CO2でしたが、現在の条件では保持調節のためにアルコールなどの有機溶媒を添加しているため、移動相の臨界温度は一般的なクロマト条件からかなり高く外れているのです。SFCは名前に偽りあり…ただ、これに代わる名称がいくつか提唱されているものの定着はしていません。SFCの第一人者となって、名前を後世に残すチャンスかも??

上述のカラムやSFC分析に関する詳しいお問い合わせやデモの依頼は以下を参照ください。

お問い合わせ

株式会社ダイセル CPIカンパニー 開発営業部

お問い合わせフォームはこちら 

本記事はダイセルCPIカンパニーの寄稿記事です。

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 含窒素有機化合物の触媒合成について
  2. OPRD誌を日本プロセス化学会がジャック?
  3. 2Dから3Dに:ジラジカルを用いたベンゼノイドの骨格編集
  4. 最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化すること…
  5. 電子や分子に応答する“サンドイッチ”分子からなるナノカプセルを開…
  6. 二酸化炭素をはきだして♪
  7. 触媒なの? ?自殺する酵素?
  8. SDFって何?~化合物の表記法~

注目情報

ピックアップ記事

  1. 正立方体から六面体かご型に分子骨格を変える
  2. 日本語で得る学術情報 -CiNiiのご紹介-
  3. 白川英樹 Hideki Shirakawa
  4. ペンタフルオロスルファニル化合物
  5. 研究室での英語【Part 2】
  6. クラレが防湿フィルム開発の米ベンチャー企業と戦略的パートナーシップ
  7. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  8. リチウムを用いたメカノケミカル脱水素環化法によるナノグラフェン合成
  9. ポンコツ博士の海外奮闘録XV ~博士,再現性を高める①~
  10. 第7回HOPEミーティング 参加者募集!!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP