[スポンサーリンク]

H

細見・櫻井アリル化反応 Hosomi-Sakurai Allylation

[スポンサーリンク]

概要

アリルシランを用いるアリル化反応。アリルシランは、アリルスズよりも毒性が低く、アリルGrignardやアリルリチウム試薬に比べて安定な有用合成試薬である。

ルイス酸やフッ化物イオンなどがプロモータとしてよく用いられている。特に、ルイス酸による反応はアリルリチウムやアリルマグネシウムの反応とは対照的にγ位選択的に進行し、基質によっては立体選択性が極めて高くなる。また、共役エノンのアリル化では共役付加のみが進行する。

基本文献

  • Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941. doi:10.1246/cl.1976.941
  • Hosomi, A.; Sakurai, H. Tetrahedron Lett. 197617, 1295. doi:10.1016/S0040-4039(00)78044-0
  • Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 197799, 1673. DOI: 10.1021/ja00447a080
  • Wilson, S. R.; Price, M.F. J. Am. Chem. Soc. 1982104, 1124. DOI: 10.1021/ja00368a049
  • Review: Fleming, I. et al. Org. React. 198937, 57.
  • Review: Fleming, I. Comprehensive Organic Syntheis 19912, 563.

 

反応機構

シリルβ位のカルボカチオンは超共役効果により安定化されることが知られている。これをふまえて以下のような反応機構が提唱されている。ケイ素のルイス酸性は弱いため、反応は非環状遷移状態を経て進行するとされる。(Tetrahedron Lett. 198324, 2865.)
hosomi_sakurai_2.gif

反応例

Denmarkらは、独自に開発したキラルLewis塩基を使用することで、不斉アリル化を達成している。[1] hosomi_sakurai_3.gif
山本らは、フッ化銀およびキラルな不斉リン配位子をもちいることで、低反応性・低選択性であるケトンへの高エナンチオ選択的不斉アリル化を達成している。[2] hosomi_sakurai_4.gif
Furaquinocin Aの合成[3] hosomi_sakurai_5.gif
Halichlorineの合成[4] hosomi_sakurai_7.gif
環状オキソニウムカチオンへの細見-櫻井反応は高立体選択的に進行する。6員環の場合は4位、5員環の場合は3位の置換基効果に大きく依存する。[5] hosomi_sakurai_8.gif

実験手順

不飽和ケトンへの共役アリル化[6] hosomi_sakurai_6.gif

実験のコツ・テクニック

 

参考文献

[1] Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. E. J. Org. Chem. 1994, 59, 6161. DOI: 10.1021/jo00100a013

[2] Wadamoto, M.; Yamamoto, H. J. Am. Chem. Soc. 2005127, 14556. DOI: 10.1021/ja0553351

[3] Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155. DOI: 10.1021/ja0364118

[4] (a) Trauner, D.; Schwartz, J. B.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1999, 38, 3542. [abstract] (b) Trauner, D.; Danishefsky, S. J. Tetahedron Lett. 199940, 6513. doi:10.1016/S0040-4039(99)01170-3

[5] (a) Woerpel, K. A. et al. J. Am. Chem. Soc. 1999121. 12208. DOI: 10.1021/ja993349z (b) Woerpel, K. A. et al. J. Am. Chem. Soc. 2003125, 14149. DOI: 10.1021/ja0375176 (c) Woerpel, K. A. et al. J. Am. Chem. Soc.
2003, 125, 15521. DOI: 10.1021/ja037935a (d) Woerpel, K. A. et al. J. Am. Chem. Soc. 2005127, 10879. DOI: 10.1021/ja0524043

[6] Org. Synth. 1984, 62, 84.

 

関連反応

 

関連書籍

 

関連リンク

関連記事

  1. ミニスキ反応 Minisci Reaction
  2. クライゼン転位 Claisen Rearrangement
  3. アザ-ウィティッヒ反応 Aza-Wittig Reaction
  4. 脱離反応 Elimination Reaction
  5. アフマトヴィッチ反応 Achmatowicz Reaction
  6. 野依不斉水素移動反応 Noyori Asymmetric Tra…
  7. ネフ反応 Nef Reaction
  8. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Gan…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 1次面接を突破するかどうかは最初の10分で決まる
  2. 木曽 良明 Yoshiaki Kiso
  3. 170年前のワインの味を化学する
  4. 次世代電池の開発と市場予測について調査結果を発表
  5. 第91回―「短寿命化学種の分光学」Daniel Neumark教授
  6. ケムステの記事が3650記事に到達!
  7. ねじれがあるアミド
  8. 角田試薬
  9. アンモニアで走る自動車 国内初、工学院大が開発
  10. 磁石でくっつく新しい分子模型が出資募集中

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

4つの異なる配位結合を持つ不斉金属原子でキラル錯体を組み上げる!!

第 296 回のスポットライトリサーチは、東京大学塩谷研究室で博士号を取得され、現在は京都大学寺西研…

ナタリー カロリーナ ロゼロ ナバロ Nataly Carolina Rosero-Navarro

Nataly Carolina Rosero-Navarro (コロンビア生まれ) は、日本在住の化…

【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)

<内容>ご好評につき、先月と同じ内容のウェブセミナーを開催!事業・開発課題の一ソリュ…

銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~

Tshozoです。先日ケムステスタッフの方が気になる関連論文を紹介されていましたので書くこととしまし…

富士フイルム和光純薬がケムステVプレミアレクチャーに協賛しました

ケムステVシンポとともにケムステオンライン講演会の両輪をなすケムステVプレミアクチャー(Vプレレク)…

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

Chem-Station Twitter

PAGE TOP