[スポンサーリンク]

odos 有機反応データベース

庄野酸化 Shono Oxidation

[スポンサーリンク]

概要

アルコール溶媒中にアミドまたはカルバメートを電解酸化し、N,O-アセタールを得る反応。アミンα位の官能基化反応として有用である。

基本文献

  • Shono, T.; Hamaguichi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264. DOI: 10.1021/ja00848a020
  • Shono, T.; Matsumura, Y.; Tsubata, K. Tetrahedron Lett. 1981, 22, 3249. doi:10.1016/S0040-4039(01)81876-1
  • Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172. DOI: 10.1021/ja00395a029
  • Shono, T.; Matsumura, Y.; Tsubata, K. Org. Synth. 1984, 63, 206. DOI: 10.15227/orgsyn.063.0206
  • Shono, T.; Matsumura, Y.; Uchida, K.; Tsubata, K.; Makino, A. J. Org. Chem. 1984, 49, 300. DOI: 10.1021/jo00176a016
  • Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K.; Kanazawa, T.; Tasuda, K. J. Org. Chem. 1984, 49, 3711.  DOI: 10.1021/jo00194a008
  • Alfonso-Súarez, P.; Kolliopoulos, A. V.; Smith, J. P. Banks, C. E.; Jones, A. M. Tetrahedron Lett. 2015, 56, 6863. doi:10.1016/j.tetlet.2015.10.090
Review

開発の経緯

京都大学の庄野達哉によって開発された。

反応機構

N-アシルイミニウムイオン中間体が生じ、これが溶媒のアルコールで捕捉される形で反応が進行する。低温・非アルコール性溶媒で電解を行なうと、N-アシルイミニウム中間体をプールでき、アルコール以外の求核剤と直接反応させることができる(カチオンプール法)。

反応例

有機電解反応の中では研究例が多く、また複雑化合物合成へも応用されている反応の一つである。

生成物であるN,O-アセタールは新たなC-C結合形成に活用出来る。下記はトロパン骨格合成に活用した例[1]。

非対称基質においては通常立体障害の少ない方が酸化されるが、N-シアノアミンを変換すると選択性が逆転する[2]。またビシクロカルバメート基質についても、多置換の位置が反応する[3]。

カチオンプール法による庄野酸化→求核付加[4]

電解補助基(electroauxiliary)の使用による位置選択的酸化[5]:下の例ではチオフェニル基が電解補助基として働き、酸化の位置選択性が規定される。同様の目的にトリメチルシリル(TMS)基も用いられる。

電解メディエータを用いる庄野酸化[6]:官能基受容性の高い条件に出来るのが特徴。

光学活性ジアリールピロリジンの合成[7]:不斉ヒドロシリル化触媒のビルディングブロックになる。

参考文献

  1. Shono, T.; Matsumura, Y.; Tsubata, K. J. Am. Chem. Soc. 1981, 103, 1172. doi:10.1021/ja00395a029
  2. Libendi, S. S.; Demizu, Y.; Matsumura, Y.; Onomura, O. Tetrahedron 2008, 64, 3935. doi:10.1016/j.tet.2008.02.060
  3. Onomura, O.; Ishida, Y.; Maki, T.; Minato, D.; Demizu, Y.; Matsumura, Y. Electrochemistry 2006, 74, 645.
  4. Suga, S.; Okajima, M.; Yoshida, J.-i. Tetrahedron Lett. 2001, 42, 2173. doi:10.1016/S0040-4039(01)00128-9
  5. Sugawara, M.; Mori, K.; Yoshida, J.-i. Electrochim. Acta 1997, 42, 1995. doi:10.1016/S0013-4686(97)85473-4
  6. Wang, F.; Rafiee, M.; Stahl, S. S. Angew. Chem. Int. Ed. 2018, 57, 6686. doi:10.1002/anie.201803539
  7. Onomura, O.; Kirira, P. G.; Tanaka, T.; Tsukada, S.; Matsumura, Y.; Demizu, Y. Tetrahedron 2008, 64, 7498. doi:10.1016/j.tet.2008.06.004

関連書籍

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ディークマン縮合 Dieckmann Condensation
  2. アルキンの環化三量化反応 Cyclotrimerization …
  3. フィッシャーカルベン錯体 Fischer Carbene Com…
  4. 四酸化オスミウム Osmium Tetroxide (OsO4)…
  5. 玉尾・フレミング酸化 Tamao-Fleming Oxidati…
  6. オッペナウアー酸化 Oppenauer Oxidation
  7. マイヤース 不斉アルキル化 Myers Asymmetric A…
  8. ピクテ・ガムス イソキノリン合成 Pictet-Gams Iso…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 秋山・寺田触媒 Akiyama-Terada Catalyst
  2. 配位子で保護された金クラスターの結合階層性の解明
  3. Mukaiyama Award―受賞者一覧
  4. 澤本 光男 Mitsuo Sawamoto
  5. DOIって何?
  6. たるんだ肌を若返らせる薄膜
  7. ブーボー・ブラン還元 Bouveault-Blanc Reduction
  8. ヘテロカンシラノール
  9. とある社長の提言について ~日本合成ゴムとJSR~
  10. 第77回―「エネルギーと生物学に役立つ無機ナノ材料の創成」Catherine Murphy教授

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第93回―「発光金属錯体と分子センサーの研究」Cristina Lagunas教授

第93回の海外化学者インタビューは、クリスティーナ・ラグナス教授です。クイーンズ大学ベルファスト校 …

高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして

(さらに…)…

フィブロイン Fibroin

フィブロイン(Fibroin)は、繭糸(シルク)の主成分であり、繊維状タンパク質の一種である。…

「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の創製」– MIT・Swager研より

ケムステ海外研究記の第36回はマサチューセッツ工科大学(MIT)化学科のPhD課程に在籍されている吉…

八木 政行 Masayuki Yagi

八木 政行(やぎ まさゆき、Yagi Masayuki、1968年 -)は、日本の化学者である (写…

有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前編】

本連載では、生命体を特別視する "生気説" が覆されたことにより、有機合成化学の幕が開いたことについ…

第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授

第92回の海外化学者インタビューは、ロリー・ウォーターマン教授です。バーモント大学化学科に在籍し、有…

第五回ケムステVシンポジウム「最先端ケムバイオ」を開催します!

コロナウイルスの自粛も全国で解かれ、日本国内はだいぶ復帰に近づいてました(希望的観測)。しかし今年度…

Chem-Station Twitter

PAGE TOP