[スポンサーリンク]

化学者のつぶやき

アルコールのカップリング、NHC塩がアルとおコール

[スポンサーリンク]

ニッケル/可視光レドックス触媒を用いたアルコールの脱酸素型クロスカップリングが開発された。Nヘテロ環状カルベン塩(NHC salt)を用いた炭素酸素結合の切断が本手法の鍵である。

アルコールの脱酸素型クロスカップリング

遷移金属触媒によるC(sp2)–C(sp3)クロスカップリングには、ハロゲンやボリル基をはじめ様々な官能基が利用されてきた。しかし、天然に豊富に存在し安価なアルコールをアルキル源とするC(sp2)–C(sp3)クロスカップリングの開発は未だ発展途上である[1]。多くの場合、アルコールは事前に官能基化する必要があり、アルコールを直接利用するC(sp2)–C(sp3)クロスカップリングの例は少ない[2]。例えば宇梶、菅らは、ニッケル触媒/塩化チタンを用いた脱酸素型クロスカップリングを達成した。しかし、適用できる基質はベンジルアルコールに限られる(図 1A)[3]。また、Liらはニッケル触媒と電気化学的手法を用いることで、アルコールとハロゲン化アリールの脱酸素型クロスカップリングを達成した(図 1B)[4]。この手法では、反応系中でアルコールをアルキルブロミドに変換しており、立体障害の大きい3級アルコールは利用できない。これらの反応では、利用可能なアルコールは限定されており、より広範なアルコールに適用できる手法が求められる。
今回、プリンストン大学のMacMillan教授らはニッケル/可視光レドックス触媒を用いるアルコールとハロゲン化アリールの脱酸素型クロスカップリングの開発に成功した(図 1C)。筆者らは、N-ヘテロ環状カルベン(NHC)-アルコール付加体に着目し、アルコールからアルキルラジカルを発生させる触媒系を構築した。本反応は医薬品や天然物を含む種々の1–3級アルコールに適用できる。

図1. (A) Ni触媒/TiCl4によるクロスカップリング (B) 電解合成を利用した脱酸素型クロスカップリング (C) 今回の反応

 

“Metallaphotoredox-enabled Deoxygenative Arylation of Alcohols”
Dong, Z.; MacMillan, D. W. C. Nature 2021, 598, 451–456.
DOI: 10.1038/s41586-021-03920-6

論文著者の紹介


研究者:David W. C. MacMillan
研究者の経歴:
1991 BSc., University of Glasgow, Scotland (Associate Prof. T. N. Jones)
1996 Ph.D., University of California, Irvine, USA (Prof. L. E. Overman)
1996–1998 Postdoc, Harvard University, USA (Prof. D. A. Evans)
1998–2000 Assistant Professor, University of California, Berkeley, USA
2000–2003 Associate Professor, California Institute of Technology, USA
2003–2004 Professor, California Institute of Technology, USA
2004–2006 Earle C. Anthony Professor of Chemistry, California Institute of Technology, USA
2006–2011 A. Barton Hepburn Professor of Chemistry, Princeton University, USA
2006– Director Merck Center for Catalysis, Princeton University, USA
2011– James S. McDonnell Distinguished University Professor of Chemistry, Princeton University, USA
研究内容:光レドックス触媒、不斉有機触媒の開発にもとづく天然物や薬品の新規合成法の開発

論文の概要

著者らはアルコール1をNHC塩4とピリジンで処理し、続いてNiBr2·dtbbpyおよびIr(ppy)2(dtbbpy)PF6触媒存在下、ハロゲン化アリール2を添加し、青色光を照射することで、カップリング体3を与えることを見いだした(図 2A)。本反応は、キラルな一級アルコール1aや、ブロモ基をもつ二級アルコール1bから良好な収率でカップリング体3が得られる。さらに三級アルコール1cや糖誘導体1dが本反応に適用できた。また、著者らはジオール1eに対し、4-ブロモベンズアルデヒド、5-ブロモ-2-メチルチアゾールを逐次的に反応させることで、ジアステレオ選択的にカップリング体3fを得ることに成功した(図 2B)。
著者らは次のような反応機構を提唱した(図 2C)。まず、アルコール1とNHC塩4から、NHC-アルコール付加体5が生成する。その後、青色光で励起されたイリジウム(III)によって5が酸化され、ラジカルカチオン9となる。脱プロトン化により9がα–アミノラジカル10に変換され、続くカーバマート11の生成を駆動力としたb開裂によって、アルキルラジカル12が得られる。ハロゲン化アリール2がニッケル(0)錯体14に酸化的付加して生成する15に対して12が攻撃することで、ニッケル(III)錯体16となる。その後、還元的脱離によってカップリング体3を与え、生成したニッケル(I)錯体13はイリジウム(II)錯体8によって還元され14が再生する。

図2. (A) 基質適用範囲 (B) 逐次的カップリング (C) 推定反応機構

以上、Ni/可視光レドックス触媒とNHC塩を用いたアルコールの脱酸素型クロスカップリングが開発された。天然物や医薬品に最も多く存在する官能基であるアルコールを脱酸素カップリングに利用できる本反応は、既存の合成戦略を刷新しうる可能性が期待される。

参考文献

  1. Ertl, P.; Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 2019, 82, 1258–1263. DOI: 1021/acs.jnatprod.8b01022
  2. (a) Zhang, X.; MacMillan, D. W. C. Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides. J. Am. Chem. Soc. 2016, 138, 13862–13865. DOI: 1021/jacs.6b09533 (b) Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. Selective Cross-Coupling of Organic Halides with Allylic Acetates. J. Org. Chem. 2012, 77, 9989–10000. DOI: 10.1021/jo302086g (c) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  3. Suga, T.; Ukaji, Y. Nickel-Catalyzed Cross-Electrophile Coupling between Benzyl Alcohols and Aryl Halides Assisted by Titanium Co-Reductant. Org.Lett. 2018, 20, 7846–7850. DOI: 1021/acs.orglett.8b03367
  4. Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J. Am. Chem. Soc. 2021, 143, 3536–3543. DOI: 1021/jacs.0c13093
  5. Coulembier, O.; Lohmeijer, B. G. G.; Dove, A. P.; Pratt, R. C.; Mespouille, L.; Culkin, D. A.; Benight, S. J.; Dubois, P.; Waymouth, R. W.; Hedrick, J. L. Alcohol Adducts of N-Heterocyclic Carbenes: Latent Catalysts for the Thermally-Controlled Living Polymerization of Cyclic Esters. Macromolecules 2006, 39, 5617–5628. DOI: 1021/ma0611366

ケムステ関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 水素社会実現に向けた連続フロー合成法を新開発
  2. ゴキブリをバイオ燃料電池、そしてセンサーに
  3. Nitrogen Enriched Gasoline・・・って何…
  4. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするト…
  5. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  6. 芳香族トリフラートからアリールラジカルを生成する
  7. 【四国化成ホールディングス】新卒採用情報(2026卒)
  8. 有機反応を俯瞰する ー縮合反応

注目情報

ピックアップ記事

  1. ポンコツ博士の海外奮闘録③ 〜博士,車を買う~
  2. Rではじめるケモ・マテリアルズ・インフォマティクスープログラミング・ノックで基礎を完全習得ー
  3. 有機フッ素化合物の新しいビルドアップ構築法 ~硫黄官能基が導く逐次的分子変換~
  4. ダンハイザー環形成反応 Danheiser Annulation
  5. 森本 正和 Masakazu Morimoto
  6. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  7. 固体高分子電解質の基礎、材料技術と実用化【終了】
  8. 福山クロスカップリング Fukuyama Cross Coupling
  9. 向山酸化剤
  10. 銀カルベノイドの金属特性を活用したフェノール類の不斉脱芳香族化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第XX回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP