[スポンサーリンク]

化学者のつぶやき

アルコールのカップリング、NHC塩がアルとおコール

[スポンサーリンク]

ニッケル/可視光レドックス触媒を用いたアルコールの脱酸素型クロスカップリングが開発された。Nヘテロ環状カルベン塩(NHC salt)を用いた炭素酸素結合の切断が本手法の鍵である。

アルコールの脱酸素型クロスカップリング

遷移金属触媒によるC(sp2)–C(sp3)クロスカップリングには、ハロゲンやボリル基をはじめ様々な官能基が利用されてきた。しかし、天然に豊富に存在し安価なアルコールをアルキル源とするC(sp2)–C(sp3)クロスカップリングの開発は未だ発展途上である[1]。多くの場合、アルコールは事前に官能基化する必要があり、アルコールを直接利用するC(sp2)–C(sp3)クロスカップリングの例は少ない[2]。例えば宇梶、菅らは、ニッケル触媒/塩化チタンを用いた脱酸素型クロスカップリングを達成した。しかし、適用できる基質はベンジルアルコールに限られる(図 1A)[3]。また、Liらはニッケル触媒と電気化学的手法を用いることで、アルコールとハロゲン化アリールの脱酸素型クロスカップリングを達成した(図 1B)[4]。この手法では、反応系中でアルコールをアルキルブロミドに変換しており、立体障害の大きい3級アルコールは利用できない。これらの反応では、利用可能なアルコールは限定されており、より広範なアルコールに適用できる手法が求められる。
今回、プリンストン大学のMacMillan教授らはニッケル/可視光レドックス触媒を用いるアルコールとハロゲン化アリールの脱酸素型クロスカップリングの開発に成功した(図 1C)。筆者らは、N-ヘテロ環状カルベン(NHC)-アルコール付加体に着目し、アルコールからアルキルラジカルを発生させる触媒系を構築した。本反応は医薬品や天然物を含む種々の1–3級アルコールに適用できる。

図1. (A) Ni触媒/TiCl4によるクロスカップリング (B) 電解合成を利用した脱酸素型クロスカップリング (C) 今回の反応

 

“Metallaphotoredox-enabled Deoxygenative Arylation of Alcohols”
Dong, Z.; MacMillan, D. W. C. Nature 2021, 598, 451–456.
DOI: 10.1038/s41586-021-03920-6

論文著者の紹介


研究者:David W. C. MacMillan
研究者の経歴:
1991 BSc., University of Glasgow, Scotland (Associate Prof. T. N. Jones)
1996 Ph.D., University of California, Irvine, USA (Prof. L. E. Overman)
1996–1998 Postdoc, Harvard University, USA (Prof. D. A. Evans)
1998–2000 Assistant Professor, University of California, Berkeley, USA
2000–2003 Associate Professor, California Institute of Technology, USA
2003–2004 Professor, California Institute of Technology, USA
2004–2006 Earle C. Anthony Professor of Chemistry, California Institute of Technology, USA
2006–2011 A. Barton Hepburn Professor of Chemistry, Princeton University, USA
2006– Director Merck Center for Catalysis, Princeton University, USA
2011– James S. McDonnell Distinguished University Professor of Chemistry, Princeton University, USA
研究内容:光レドックス触媒、不斉有機触媒の開発にもとづく天然物や薬品の新規合成法の開発

論文の概要

著者らはアルコール1をNHC塩4とピリジンで処理し、続いてNiBr2·dtbbpyおよびIr(ppy)2(dtbbpy)PF6触媒存在下、ハロゲン化アリール2を添加し、青色光を照射することで、カップリング体3を与えることを見いだした(図 2A)。本反応は、キラルな一級アルコール1aや、ブロモ基をもつ二級アルコール1bから良好な収率でカップリング体3が得られる。さらに三級アルコール1cや糖誘導体1dが本反応に適用できた。また、著者らはジオール1eに対し、4-ブロモベンズアルデヒド、5-ブロモ-2-メチルチアゾールを逐次的に反応させることで、ジアステレオ選択的にカップリング体3fを得ることに成功した(図 2B)。
著者らは次のような反応機構を提唱した(図 2C)。まず、アルコール1とNHC塩4から、NHC-アルコール付加体5が生成する。その後、青色光で励起されたイリジウム(III)によって5が酸化され、ラジカルカチオン9となる。脱プロトン化により9がα–アミノラジカル10に変換され、続くカーバマート11の生成を駆動力としたb開裂によって、アルキルラジカル12が得られる。ハロゲン化アリール2がニッケル(0)錯体14に酸化的付加して生成する15に対して12が攻撃することで、ニッケル(III)錯体16となる。その後、還元的脱離によってカップリング体3を与え、生成したニッケル(I)錯体13はイリジウム(II)錯体8によって還元され14が再生する。

図2. (A) 基質適用範囲 (B) 逐次的カップリング (C) 推定反応機構

以上、Ni/可視光レドックス触媒とNHC塩を用いたアルコールの脱酸素型クロスカップリングが開発された。天然物や医薬品に最も多く存在する官能基であるアルコールを脱酸素カップリングに利用できる本反応は、既存の合成戦略を刷新しうる可能性が期待される。

参考文献

  1. Ertl, P.; Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 2019, 82, 1258–1263. DOI: 1021/acs.jnatprod.8b01022
  2. (a) Zhang, X.; MacMillan, D. W. C. Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides. J. Am. Chem. Soc. 2016, 138, 13862–13865. DOI: 1021/jacs.6b09533 (b) Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. Selective Cross-Coupling of Organic Halides with Allylic Acetates. J. Org. Chem. 2012, 77, 9989–10000. DOI: 10.1021/jo302086g (c) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  3. Suga, T.; Ukaji, Y. Nickel-Catalyzed Cross-Electrophile Coupling between Benzyl Alcohols and Aryl Halides Assisted by Titanium Co-Reductant. Org.Lett. 2018, 20, 7846–7850. DOI: 1021/acs.orglett.8b03367
  4. Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J. Am. Chem. Soc. 2021, 143, 3536–3543. DOI: 1021/jacs.0c13093
  5. Coulembier, O.; Lohmeijer, B. G. G.; Dove, A. P.; Pratt, R. C.; Mespouille, L.; Culkin, D. A.; Benight, S. J.; Dubois, P.; Waymouth, R. W.; Hedrick, J. L. Alcohol Adducts of N-Heterocyclic Carbenes: Latent Catalysts for the Thermally-Controlled Living Polymerization of Cyclic Esters. Macromolecules 2006, 39, 5617–5628. DOI: 1021/ma0611366

ケムステ関連記事

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 力学的エネルギーで”逆”クリック!
  2. 論文執筆で気をつけたいこと20(2)
  3. 構造式の効果
  4. 作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分…
  5. 化学知識の源、化学同人と東京化学同人
  6. みんな大好きBRAINIAC
  7. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. マイクロ波によるケミカルリサイクル 〜PlaWave®︎の開発動…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光で2-AGの量を制御する
  2. コケに注目!:薬や香料や食品としても
  3. グレッグ・フー Gregory C. Fu
  4. 有機合成化学協会誌2020年10月号:ハロゲンダンス・Cpルテニウム–Brønsted酸協働触媒・重水素化鎖状テルペン・エラスティック結晶・複核ホウ素ヘテロ環
  5. 電子学術情報の利活用
  6. Nitrogen Enriched Gasoline・・・って何だ?
  7. カール−ヘインツ・アルトマン Karl Heinz Altmann
  8. ボイランド・シムズ酸化 Boyland-Sims Oxidation
  9. 三菱化学、来年3月にナイロン原料の外販事業から撤退=事業環境悪化で
  10. 痔の薬のはなし 真剣に調べる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

注目情報

最新記事

超原子価ヨウ素反応剤を用いたジアミド類の4-イミダゾリジノン誘導化

第468回のスポットライトリサーチは、岐阜薬科大学  合成薬品製造学研究室(伊藤研究室)に所属されて…

研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

先日のBiotage Selekt + ELSDの記事でちらっと紹介した、ELS…

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」を開催します!

修論・卒論・博士論文で大忙しの2,3月ですが、皆さんいかがお過ごしでしょうか。まとめ作業とデスク…

有機合成化学協会誌2023年1月号:[1,3]-アルコキシ転位・クロロシラン・インシリコ技術・マイトトキシン・MOF

有機合成化学協会が発行する有機合成化学協会誌、2023年1月号がオンライン公開されました。す…

飲む痔の薬のはなし1 ブロメラインとビタミンE

Tshozoです。あれ(発端記事・その後の記事)からいろいろありました。一進一退とはいえ、咀…

深紫外光源の効率を高める新たな透明電極材料

第467回のスポットライトリサーチは、東京都立大学大学院 理学研究科 廣瀬研究室の長島 陽(ながしま…

化学メーカー発の半導体技術が受賞

積水化学工業株式会社の高機能プラスチックスカンパニー開発研究所エレクトロニクス材料開発センターが開発…

ラジカル種の反応性を精密に制御する-プベルリンCの世界初全合成

第466回のスポットライトリサーチは、東京大学大学院薬学系研究科 天然物合成化学教室 (井上研究室)…

Biotage Selekt+ELSD【実機レビュー】

最近では、有機合成研究室には1台以上はあるのではないかという自動フラッシュ精製装置ですが、その中でも…

ケムステV年末ライブ2022開催報告! 〜今年の分子 and 人気記事 Top 10〜

だいぶ遅くなってしまいましたが、年末に開催したケムステV年末ライブの模様を報告いたします。 …

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP