[スポンサーリンク]

化学者のつぶやき

アルコールのカップリング、NHC塩がアルとおコール

[スポンサーリンク]

ニッケル/可視光レドックス触媒を用いたアルコールの脱酸素型クロスカップリングが開発された。Nヘテロ環状カルベン塩(NHC salt)を用いた炭素酸素結合の切断が本手法の鍵である。

アルコールの脱酸素型クロスカップリング

遷移金属触媒によるC(sp2)–C(sp3)クロスカップリングには、ハロゲンやボリル基をはじめ様々な官能基が利用されてきた。しかし、天然に豊富に存在し安価なアルコールをアルキル源とするC(sp2)–C(sp3)クロスカップリングの開発は未だ発展途上である[1]。多くの場合、アルコールは事前に官能基化する必要があり、アルコールを直接利用するC(sp2)–C(sp3)クロスカップリングの例は少ない[2]。例えば宇梶、菅らは、ニッケル触媒/塩化チタンを用いた脱酸素型クロスカップリングを達成した。しかし、適用できる基質はベンジルアルコールに限られる(図 1A)[3]。また、Liらはニッケル触媒と電気化学的手法を用いることで、アルコールとハロゲン化アリールの脱酸素型クロスカップリングを達成した(図 1B)[4]。この手法では、反応系中でアルコールをアルキルブロミドに変換しており、立体障害の大きい3級アルコールは利用できない。これらの反応では、利用可能なアルコールは限定されており、より広範なアルコールに適用できる手法が求められる。
今回、プリンストン大学のMacMillan教授らはニッケル/可視光レドックス触媒を用いるアルコールとハロゲン化アリールの脱酸素型クロスカップリングの開発に成功した(図 1C)。筆者らは、N-ヘテロ環状カルベン(NHC)-アルコール付加体に着目し、アルコールからアルキルラジカルを発生させる触媒系を構築した。本反応は医薬品や天然物を含む種々の1–3級アルコールに適用できる。

図1. (A) Ni触媒/TiCl4によるクロスカップリング (B) 電解合成を利用した脱酸素型クロスカップリング (C) 今回の反応

 

“Metallaphotoredox-enabled Deoxygenative Arylation of Alcohols”
Dong, Z.; MacMillan, D. W. C. Nature 2021, 598, 451–456.
DOI: 10.1038/s41586-021-03920-6

論文著者の紹介


研究者:David W. C. MacMillan
研究者の経歴:
1991 BSc., University of Glasgow, Scotland (Associate Prof. T. N. Jones)
1996 Ph.D., University of California, Irvine, USA (Prof. L. E. Overman)
1996–1998 Postdoc, Harvard University, USA (Prof. D. A. Evans)
1998–2000 Assistant Professor, University of California, Berkeley, USA
2000–2003 Associate Professor, California Institute of Technology, USA
2003–2004 Professor, California Institute of Technology, USA
2004–2006 Earle C. Anthony Professor of Chemistry, California Institute of Technology, USA
2006–2011 A. Barton Hepburn Professor of Chemistry, Princeton University, USA
2006– Director Merck Center for Catalysis, Princeton University, USA
2011– James S. McDonnell Distinguished University Professor of Chemistry, Princeton University, USA
研究内容:光レドックス触媒、不斉有機触媒の開発にもとづく天然物や薬品の新規合成法の開発

論文の概要

著者らはアルコール1をNHC塩4とピリジンで処理し、続いてNiBr2·dtbbpyおよびIr(ppy)2(dtbbpy)PF6触媒存在下、ハロゲン化アリール2を添加し、青色光を照射することで、カップリング体3を与えることを見いだした(図 2A)。本反応は、キラルな一級アルコール1aや、ブロモ基をもつ二級アルコール1bから良好な収率でカップリング体3が得られる。さらに三級アルコール1cや糖誘導体1dが本反応に適用できた。また、著者らはジオール1eに対し、4-ブロモベンズアルデヒド、5-ブロモ-2-メチルチアゾールを逐次的に反応させることで、ジアステレオ選択的にカップリング体3fを得ることに成功した(図 2B)。
著者らは次のような反応機構を提唱した(図 2C)。まず、アルコール1とNHC塩4から、NHC-アルコール付加体5が生成する。その後、青色光で励起されたイリジウム(III)によって5が酸化され、ラジカルカチオン9となる。脱プロトン化により9がα–アミノラジカル10に変換され、続くカーバマート11の生成を駆動力としたb開裂によって、アルキルラジカル12が得られる。ハロゲン化アリール2がニッケル(0)錯体14に酸化的付加して生成する15に対して12が攻撃することで、ニッケル(III)錯体16となる。その後、還元的脱離によってカップリング体3を与え、生成したニッケル(I)錯体13はイリジウム(II)錯体8によって還元され14が再生する。

図2. (A) 基質適用範囲 (B) 逐次的カップリング (C) 推定反応機構

以上、Ni/可視光レドックス触媒とNHC塩を用いたアルコールの脱酸素型クロスカップリングが開発された。天然物や医薬品に最も多く存在する官能基であるアルコールを脱酸素カップリングに利用できる本反応は、既存の合成戦略を刷新しうる可能性が期待される。

参考文献

  1. Ertl, P.; Schuhmann, T. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products. J. Nat. Prod. 2019, 82, 1258–1263. DOI: 1021/acs.jnatprod.8b01022
  2. (a) Zhang, X.; MacMillan, D. W. C. Alcohols as Latent Coupling Fragments for Metallaphotoredox Catalysis: sp3–sp2 Cross-Coupling of Oxalates with Aryl Halides. J. Am. Chem. Soc. 2016, 138, 13862–13865. DOI: 1021/jacs.6b09533 (b) Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. Selective Cross-Coupling of Organic Halides with Allylic Acetates. J. Org. Chem. 2012, 77, 9989–10000. DOI: 10.1021/jo302086g (c) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem., Int. Ed. 2015, 54, 9876–9880. DOI: 10.1002/anie.201503936
  3. Suga, T.; Ukaji, Y. Nickel-Catalyzed Cross-Electrophile Coupling between Benzyl Alcohols and Aryl Halides Assisted by Titanium Co-Reductant. Org.Lett. 2018, 20, 7846–7850. DOI: 1021/acs.orglett.8b03367
  4. Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J. Am. Chem. Soc. 2021, 143, 3536–3543. DOI: 1021/jacs.0c13093
  5. Coulembier, O.; Lohmeijer, B. G. G.; Dove, A. P.; Pratt, R. C.; Mespouille, L.; Culkin, D. A.; Benight, S. J.; Dubois, P.; Waymouth, R. W.; Hedrick, J. L. Alcohol Adducts of N-Heterocyclic Carbenes: Latent Catalysts for the Thermally-Controlled Living Polymerization of Cyclic Esters. Macromolecules 2006, 39, 5617–5628. DOI: 1021/ma0611366

ケムステ関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 実験条件検討・最適化特化サービス miHubのメジャーアップデー…
  2. 有機合成化学協会誌2019年7月号:ジアステレオ選択的Joull…
  3. シュプリンガー・ネイチャーより 化学会・薬学会年会が中止になりガ…
  4. 電子実験ノートSignals Notebookを紹介します③
  5. 一流化学者たちの最初の一歩
  6. 21世紀に入り「世界同時多発研究」は増加傾向に
  7. Brevianamide Aの全合成:長年未解明の生合成経路の謎…
  8. 今冬注目の有機化学書籍3本!

注目情報

ピックアップ記事

  1. 新しい量子化学 電子構造の理論入門
  2. キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~
  3. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座
  4. 磁性流体アートの世界
  5. ゲルハルト・エルトゥル Gerhard Ertl
  6. 吉田 優 Suguru Yoshida
  7. モータースポーツで盛り上がるカーボンニュートラル
  8. ペプチドの特定部位を狙って変換する -N-クロロアミドを経由するペプチドの位置選択的C–H塩素化-
  9. 工学的応用における小分子キラリティーの付加価値: Nature Rev. Chem. 2017-6/7月号
  10. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング」ETH Zurich、Martin Fussenegger研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年2月
 123456
78910111213
14151617181920
21222324252627
28  

注目情報

最新記事

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー