[スポンサーリンク]

化学者のつぶやき

なぜ傷ついたマジックマッシュルームは青くなるの?

[スポンサーリンク]

60年以上不明だったマジックマッシュルームの青色化メカニズムが解明された。青色色素の構造と生合成経路が初めて明かされた。

マジックマッシュルームと青色化

ミナミシビレダケ(Psilocybe cubensis)をはじめとするPsilocybe属のキノコは一般的にマジックマッシュルームと呼ばれ、向精神性をもつシロシビン(1)を含有する(図1A)。1は1958年に単離・構造決定されたトリプタミン骨格をもつアルカロイドである[1]。ヒトがマジックマッシュルームを摂取すると1の脱リン酸化が起こり、シロシン(2)が生成する。この2は5-ヒドロキシトリプタミン受容体のアゴニストとして働き、幻覚作用を引き起こす。
マジックマッシュルームの特徴の一つとして、傷つけられるとその箇所が青く変化することが挙げられる(図1B)。青色化の機構解明は長い間研究者の注目を集めている(図1C)[2]。1960年にLevineらは、ヨーロッパイガイ(Mytilus edulis)に含まれる酸化酵素を用いて2を酸化したところ、青色化することを報告した[2a]。その際に生成する青色化合物はキノイド構造をもつと推測した。Bocksらは1を酸化しても青色化が起こらないこと、青色化合物を還元すると退色することを報告している[2b]。また、HoritaとWeberは、哺乳類組織のホモジネートを用いることで2は即座に、1もゆっくりと青色化することを見いだした[2c]。哺乳類組織にはホスファターゼが含まれることから、青色化反応は1の脱リン酸化された2が酸化されることで起こることが示唆された。しかし、青色化合物の構造は明らかになっておらず、マジックマッシュルームの生体内での合成経路も解明されていない。

 今回、イェーナ大学のHoffmeisterらは、マジックマッシュルームの損傷時に産生する青色色素の構造決定および生合成経路の解明に成功した。その過程で、青色化機構で重要となる新しい酵素、ホスファターゼPsiPとオキシダーゼPsiLの同定にも成功した。

図1. (A) 青色化反応 (B) シロシビンとシロシンの構造 (C) 過去の青色化機構解明実験 (D) 本論文で明らかになった青色化機構

 

“Injury-Triggered Blueing Reactions of Psilocybe “Magic” Mushrooms”
Lenz, C.; Wick, J.; Braga, D.; García-Altares, M.; Lackner, G.; Hertweck, C.; Gressler, M.; Hoffmeister, D. Angew. Chem.,Int. Ed. 2020, 59, 1450–1454
DOI: 10.1002/anie.201910175

論文著者の紹介

研究者:Dirk Hoffmeister
研究者の経歴:
1998 Diploma in Biology, University of Tübingen, Germany
2002 Ph.D., Faculty of Chemistry and Pharmacy, University of Freiburg, Germany (Prof. Andreas Bechthold)
2002–2004 Postdoc, University of Wisconsin, Madison, USA (Prof. Jon S. Thorson)
2004–2007 Research assistant, Institute for Pharmacy, University of Freiburg, Germany
2008 Habilitation in Pharmaceutical Biology and Biotechnology, University of Freiburg, Germany
2007–2009 Assistant Professor, University of Minnesota, Twin Cities, USA
2009–2014 Associate Professor, Department of Pharmaceutical Biology, University of Jena, and Head of the Associated Department Pharmaceutical Biology, Hans Knöll Institute, Germany
2014– Professor, University of Jena and Hans Knöll Institute, Germany
研究内容:真菌や担子菌類の二次代謝産物の生化学と遺伝学、微生物の非リボソームペプチド合成酵素研究

論文の概要

著者らはまず、シロシビン(1)からシロシン(2)に導くホスファターゼと、2から青色色素を生成するためのオキシダーゼを同定した。すなわち、ミナミシビレタケから抽出したタンパク質を種々のクロマトグラフィーで精製した。目的の酵素は4-ニトロフェニル二水素リン酸もしくはシリンガルダジンで呈色し検出した。続くペプチドマスフィンガープリンティング法*によりホスファターゼPsiPとラッカーゼPsiLが同定された。PsiLはマルチ銅オキシダーゼであり、標的から一電子除去する触媒として働く。また、これらの酵素は細胞外またはリソソームに局在していることも明らかとなった。
続いて、2を塩化鉄(III)で酸化したモデル反応のマススペクトルによる分析、および青色色素のIRスペクトルから青色化合物の構造は5であると決定した。また、自動酸化条件(西洋ワサビペルオキシダーゼ/H2O2)による2の酸化反応のin situ 13C NMR測定により2の酸化的カップリング反応の機構を解析した(図2A)。その結果より、以下の青色化機構を提唱した(図2B)。1がPsiPにより脱リン酸化し2を生成する。得られた2はPsiLによって酸化され、フェノキシラジカル3を経由してC5位でカップリングし、二量体4を形成する。4は無色であるロイコ体だが、キノイド構造5をとることで青く発色する。また、マジックマッシュルームが産生する青色化合物は単一ではなく、2がさらに重合することで得られる無色の重合体6がキノイド構造に変換した7の不均一混合物である。
以上、傷ついたマジックマッシュルームが青色化する生体内の機構が解明された。今後はこの構造決定された青色化合物の生物学的役割解明が期待される。

図2. (A) 2のオリゴマー化におけるin situ 13C NMRスペクトル (B) 青色化の推定機構(論文より引用)

参考文献

  1. (a)Hofmann, A.; Heim, R.; Brack, A.; Kobel, H. Psilocybin, Ein Psychotroper Wirkstoff aus Dem Mexikanischen Rauschpilz Psilocybe Mexicana Experientia 1958, 14, 107–109. DOI: 10.1007/BF02159243 (b) Hofmann, A.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Konstitutionsaufklärung und Synthese von Psilocybin. Experientia 1958, 14, 397–399. DOI: 10.1007/BF02160424 (c) Hofmann, A.; Heim, R.; Brack, A.; Kobel, H.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. Psilocybin und Psilocin, Zwei Psychotrope Wirkstoffe aus Mexikanischen Rauschpilzen. Helv. Chim. Acta 1959, 42, 1557–1572. DOI: 10.1002/hlca.19590420518
  2. (a)Blaschko, H.; Levine, W. G. Enzymic Oxidtion of Psilocine and Other Hydroxyindoles Biochem. Pharmacol. 1960, 3, 168–169. DOI: 10.1016/0006-2952(60)90036-8 (b) Bocks, S. M. Fungal Metabolism-IV. : The Oxidation of Psilocin by p-Diphenol Oxidase (Laccase). Phytochemistry1967, 6, 1629–1631. DOI: 10.1016/S0031-9422(00)82894-0 (c) Horita, A.; Weber, L. J. The Enzymic Dephosphorylation and Oxidation of Psilocybin and Pscilocin by Mammalian Tissue Homogenates. Biochem. Pharmacol. 1961, 7, 47–54. DOI: 10.1016/0006-2952(61)90124-1
  3. 関根太一, 加藤智啓. 「質量分析による蛋白質の同定」 http://igakukai.marianna-u.ac.jp/idaishi/www/322/11-32-2gijutsu.pdf (2020年1月20日閲覧)

用語説明

ペプチドマスフィンガープリンティング法[3]
未知タンパク質を同定する手法。単離したタンパク質をトリプシンなど配列特異性の高いプロテアーゼで切断する。切断されて得られた複数のペプチド鎖を質量分析し分子量を測定する。一方でin silicoでは、タンパク質データベース上のアミノ酸配列をトリプシンなどで切断すると理論上どのようなペプチド断片が得られるかを予測する。以上のように測定された分子量の実測値と、データーベースから得られた理論値をコンピューターで比較することで、統計的に最も一致率が高いタンパク質が示される。

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 嫌気性コリン代謝阻害剤の開発
  2. 3級C-H結合選択的な触媒的不斉カルベン挿入反応
  3. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  4. 多彩な蛍光を発する単一分子有機化合物をつくる
  5. キラルLewis酸触媒による“3員環経由4員環”合成
  6. バイオタージ Isolera: フラッシュ自動精製装置がSPEE…
  7. Retraction watch リトラクション・ウオッチ
  8. ケムステ主催バーチャルシンポジウム「最先端有機化学」を開催します…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 投票!2013年ノーベル化学賞は誰の手に??
  2. 1,2-/1,3-ジオールの保護 Protection of 1,2-/1,3-diol
  3. サイエンスアゴラ参加辞退のお知らせ
  4. メチオニン選択的なタンパク質修飾反応
  5. 超原子結晶!TCNE!インターカレーション!!!
  6. タングトリンの触媒的不斉全合成
  7. 三井化学と日産化学が肥料事業を統合
  8. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  9. ちょっとした悩み
  10. 世界初の有機蓄光

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
« 2月   4月 »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー】 マイクロ波による新事業 石油化学・プラスチック業界のための脱炭素・電化ソリューション

<内容>本イベントでは、石油化学/プラスチック業界における脱炭素・電化の新たなソ…

素材・化学で「どう作るか」を高度化する共同研究拠点、産総研が3カ所で整備

産業技術総合研究所、材料・化学領域は、マテリアル・プロセスイノベーションプラットフォームの整備をスタ…

自己組織化ねじれ双極マイクロ球体から円偏光発光の角度異方性に切り込む

第327回のスポットライトリサーチは、筑波大学大学院数理物質科学研究科 物性・分子工学専攻 山本・山…

第159回―「世界最大の自己組織化分子を作り上げる」佐藤宗太 特任教授

第159回の海外化学者インタビューは日本から、佐藤宗太 特任教授です。東京大学工学部応用化学科に所属…

π-アリルイリジウムに新たな光を

可視光照射下でのイリジウム触媒によるアリルアルコールの不斉アリル位アルキル化が開発されたキラルな…

うっかりドーピングの化学 -禁止薬物と該当医薬品-

「うっかりドーピング」という言葉をご存知でしょうか。禁止薬物に該当する成分を含む風邪…

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP