[スポンサーリンク]

ナノカーボン

ダイヤモンドライクカーボン

[スポンサーリンク]

ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)は炭素から成るアモルファスの薄膜で、高硬質、低摩擦、高撥水性、生体親和性などの特徴があり、様々な製品に使われ始めている。

DLCとは

炭素の素材といえば、グラファイト、ダイヤモンド、フラーレン、カーボンナノチューブなどが挙げられるが、これらは主に炭素の結合によって分類される。ダイヤモンドライクカーボンはその名の通り、ダイヤモンドのように炭素がsp3の結合をしている。ただしダイヤモンドのようにすべての炭素原子のみできれいな正四面体構造を取っているわけではなく、アモルファスの状態になっていて水素やsp2の結合も含まれている。DLCは薄膜として作られるため、基材の上に製膜されることがほとんどである。

ダイヤモンドとグラファイト(黒鉛)の結合の違い:引用

DLCを語るほとんどの専門書では下記の図が登場し、水素、sp3の炭素、sp2の炭素の割合で特性が変化することを説明している。まず、水素を含まないta-Ca-Cを水素フリーDLCと呼び、潤滑油の存在下では水素含有に比べて摩擦係数が低い。ta-Cとa-Cを比べるとta-Cのほうがsp3の結合割合が多い=高硬度であるためta-CのDLCをコーティングすることが多い。一方のta-C:Ha-C:Hは、潤滑物質がない状態では水素フリーに比べて摩擦係数が低い。水素が含まれていることでポリマーのように柔らかくなり高分子への成膜がしやすい。これらは一般的な事象であり、基質や成膜方法によって変化する。

sp3-sp2-水素三元相図

合成方法

  • プラズマCVD:アセチレンやメタンガスを原料ガスとしてプラズマによりDLCを製膜させる。原料に水素原子を含むため、水素含有の膜となる。複雑な形状でも均一に製膜できることと成膜の速さが速く処理時間が短いことが特徴である。

プラズマCVDの装置図。DLCの場合、(c)からアルゴン+アセチレンなどのガスを流して膜を作る

 

  • PVD:PVDの中でもスパッタリングが主に使われる。原料は、グラファイトターゲットを主に使うので水素フリーの膜となる。

スパッタリングの装置図。DLCの場合ターゲットにグラファイトなどを使って膜を作る

応用例

  • 自動車のエンジン:エンジンでは、燃料を燃焼させてピストンを回している。そのため、部品同士が接触する面では摩擦が少ないほうがエネルギー効率が良くなるためDLCがエンジンパーツのコーティング法として注目されていて、日産のエンジンには量産車に使われている。水素を含むDLCは潤滑油との親和性が悪く油膜ができないので水素フリーが使われている。

DLCの技術が使われている日産のエンジン

  • ペットボトル:ペットボトルはガラス瓶に比べて軽いため利便性が優れているが酸素透過率が高いため、参加しやすい液体には敬遠されてきた。しかし、DLCをコーティングすることで酸素透過率を10倍、水蒸気透過率を五倍下げることができ、ワインなどもペットボトルに詰めることができるようになった。生産性が早いCVDでDLCが成膜されている。
  • 掘削工具:ドリルなどの金属を加工する道具には、基材に負けずに長く使えるための高硬度が求められている。そのため硬度が高いDLCをコーティングされている。
  • 身の回り品:硬く摩擦が少なくなるので身の回りのものに広く適用できると考えられている。また、炭素と水素から構成されているので生体親和性が高く医療機器にも適用できることが分かってきている。

DLCコーティングが施された時計。傷をつきにくくするためにこの機種以外のG-SHOCKにもDLCが積極的に使われている。

このように広く応用できるが、コーティングするにはどの方法でも減圧チャンバーが必要であるため、メッキなどに比べると導入コストが高くなってしまう。今後は、広く実用化されることが期待される。

炭素に関するケムステ関連記事

関連書籍

関連リンク

The following two tabs change content below.

関連記事

  1. アルゴン (argon; Ar)
  2. ジブロモインジゴ dibromoindigo
  3. 塩化ラジウム223
  4. IGZO
  5. アスパラプチン Asparaptine
  6. シスプラチン しすぷらちん cisplatin
  7. 嗚呼、美しい高分子の世界
  8. チアミン (thiamin)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. シャウ ピリミジン合成 Shaw Pyrimidine Synthesis
  2. セミナーチャンネルを開設
  3. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  4. すごい分子 世界は六角形でできている
  5. 二段励起型可視光レドックス触媒を用いる還元反応
  6. ウィリアム・キャンベル William C. Campbell
  7. スチュアート・ライス Stuart A. Rice
  8. LSD1阻害をトリガーとした二重機能型抗がん剤の開発
  9. 有機・高分子関連技術が一堂に会す「オルガテクノ2005」開催へ
  10. リヒャルト・エルンスト Richard R. Ernst

関連商品

注目情報

注目情報

最新記事

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結合の構造と性質

第214回のスポットライトリサーチは、東北大学大学院理学研究科化学専攻(岩本研究室)・小林 良さんに…

99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される

 まるで人間の舌のように偽造ウイスキーを見抜くことができる小型のセンサーが開発されました。このセンサ…

天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?

第213回のスポットライトリサーチは、鳥取大学大学院 工学研究科・稲葉 央 助教にお願いしました。…

有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン触媒系・環状カーボネート・素粒子・分子ジャイロコマ・テトラベンゾフルオレン・海洋マクロリド

有機合成化学協会が発行する有機合成化学協会誌、2019年8月号がオンライン公開されました。ひ…

アスピリンから生まれた循環型ビニルポリマー

第212回のスポットライトリサーチは、信州大学線維学部 化学・材料学科 ・風間 茜さん にお願いしま…

Chem-Station Twitter

PAGE TOP