[スポンサーリンク]

ナノカーボン

ダイヤモンドライクカーボン

[スポンサーリンク]

ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)は炭素から成るアモルファスの薄膜で、高硬質、低摩擦、高撥水性、生体親和性などの特徴があり、様々な製品に使われ始めている。

DLCとは

炭素の素材といえば、グラファイト、ダイヤモンド、フラーレン、カーボンナノチューブなどが挙げられるが、これらは主に炭素の結合によって分類される。ダイヤモンドライクカーボンはその名の通り、ダイヤモンドのように炭素がsp3の結合をしている。ただしダイヤモンドのようにすべての炭素原子のみできれいな正四面体構造を取っているわけではなく、アモルファスの状態になっていて水素やsp2の結合も含まれている。DLCは薄膜として作られるため、基材の上に製膜されることがほとんどである。

ダイヤモンドとグラファイト(黒鉛)の結合の違い:引用

DLCを語るほとんどの専門書では下記の図が登場し、水素、sp3の炭素、sp2の炭素の割合で特性が変化することを説明している。まず、水素を含まないta-Ca-Cを水素フリーDLCと呼び、潤滑油の存在下では水素含有に比べて摩擦係数が低い。ta-Cとa-Cを比べるとta-Cのほうがsp3の結合割合が多い=高硬度であるためta-CのDLCをコーティングすることが多い。一方のta-C:Ha-C:Hは、潤滑物質がない状態では水素フリーに比べて摩擦係数が低い。水素が含まれていることでポリマーのように柔らかくなり高分子への成膜がしやすい。これらは一般的な事象であり、基質や成膜方法によって変化する。

sp3-sp2-水素三元相図

合成方法

  • プラズマCVD:アセチレンやメタンガスを原料ガスとしてプラズマによりDLCを製膜させる。原料に水素原子を含むため、水素含有の膜となる。複雑な形状でも均一に製膜できることと成膜の速さが速く処理時間が短いことが特徴である。

プラズマCVDの装置図。DLCの場合、(c)からアルゴン+アセチレンなどのガスを流して膜を作る

 

  • PVD:PVDの中でもスパッタリングが主に使われる。原料は、グラファイトターゲットを主に使うので水素フリーの膜となる。

スパッタリングの装置図。DLCの場合ターゲットにグラファイトなどを使って膜を作る

応用例

  • 自動車のエンジン:エンジンでは、燃料を燃焼させてピストンを回している。そのため、部品同士が接触する面では摩擦が少ないほうがエネルギー効率が良くなるためDLCがエンジンパーツのコーティング法として注目されていて、日産のエンジンには量産車に使われている。水素を含むDLCは潤滑油との親和性が悪く油膜ができないので水素フリーが使われている。

DLCの技術が使われている日産のエンジン

  • ペットボトル:ペットボトルはガラス瓶に比べて軽いため利便性が優れているが酸素透過率が高いため、参加しやすい液体には敬遠されてきた。しかし、DLCをコーティングすることで酸素透過率を10倍、水蒸気透過率を五倍下げることができ、ワインなどもペットボトルに詰めることができるようになった。生産性が早いCVDでDLCが成膜されている。
  • 掘削工具:ドリルなどの金属を加工する道具には、基材に負けずに長く使えるための高硬度が求められている。そのため硬度が高いDLCをコーティングされている。
  • 身の回り品:硬く摩擦が少なくなるので身の回りのものに広く適用できると考えられている。また、炭素と水素から構成されているので生体親和性が高く医療機器にも適用できることが分かってきている。

DLCコーティングが施された時計。傷をつきにくくするためにこの機種以外のG-SHOCKにもDLCが積極的に使われている。

このように広く応用できるが、コーティングするにはどの方法でも減圧チャンバーが必要であるため、メッキなどに比べると導入コストが高くなってしまう。今後は、広く実用化されることが期待される。

炭素に関するケムステ関連記事

関連書籍

関連リンク

The following two tabs change content below.
Zeolinite

Zeolinite

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. アデノシン /adenosine
  2. ヘキサン (hexane)
  3. カリックスアレーン /calixarene
  4. 二フッ化酸素 (oxygen difluoride)
  5. カンファー(camphor)
  6. トラネキサム酸 / tranexamic acid
  7. フルエッギン Flueggine
  8. パクリタキセル(タキソール) paclitaxel(TAXOL)…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カラス不審死シアノホス検出:鳥インフルではなし
  2. 信じられない!驚愕の天然物たちー顛末編ー
  3. 多角的英語勉強法~オンライン英会話だけで満足していませんか~
  4. プラスチックに数層の分子配向膜を形成する手法の開発
  5. シモンズ・スミス反応 Simmons-Smith Reaction
  6. エステルからエーテルをつくる脱一酸化炭素金属触媒
  7. iPadで使えるChemDrawが発売開始
  8. 薬価4月引き下げ 製薬各社は「アジア」「非医薬」に活路
  9. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  10. 【インドCLIP】製薬3社 抗エイズ薬後発品で米から認可

関連商品

注目情報

注目情報

最新記事

アゾベンゼンは光る!~新たな発光材料として期待~

第225回のスポットライトリサーチは、関西学院大学 増尾研究室 助教の山内光陽(やまうち みつあき)…

ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】

アカデミックハラスメントやセクシャルハラスメントは、学業やキャリアの成功に悪影響を与えます。 どんな…

2つのグリニャールからスルホンジイミンを作る

グリニャール試薬とスルフィニルアミンを用いたスルホンジイミン合成が達成された。爆発性物質、臭気性物質…

赤外光で分子の結合を切る!

第224回のスポットライトリサーチは、東京大学生産技術研究所芦原研究室の森近一貴(もりちか いっき)…

トム・マイモニ Thomas J. Maimone

トーマス・J・マイモニ(Thomas J. Maimone、1982年2月13日–)は米国の有機化学…

キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~

詳細はこちら:https://csjkinki.com/career/日時…

Chem-Station Twitter

PAGE TOP