[スポンサーリンク]

スポットライトリサーチ

直線的な分子設計に革新、テトラフルオロスルファニル化合物―特許性の高い化学材料としての活躍に期待―

[スポンサーリンク]

第550回のスポットライトリサーチは、名古屋工業大学大学院工学研究科生命・応用化学系プログラム 柴田研究室の羽田 謙志郎(はだ けんしろう)さんにお願いしました。

柴田研究室では、含フッ素化合物の新規合成法の開発および機能開拓をメインテーマとして取り組んでいます。本プレスリリースの研究内容は、テトラフルオロスルファニル(SF4)基を持つ新しい化合物の合成についてです。本研究グループは、六価の超原子価硫黄に4つのフッ素(F)原子が結合したテトラフルオロスルファニル(SF4)部位を連結素子とした、芳香環とエナミンが非共役的に直線連結した新しい分子骨格の創出に成功しました。この研究成果は、「Angewandte Chemie International Edition」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

Regio- and Z-Selective Alkyne Hydroamination and Hydrophenoxylation using Tetrafluoro-λ6– Sulfanyl Alkynes under Superbasic, Naked Anion Conditions

Trapti Aggarwal, Kenshiro Hada, Yusuke Murata, Yuji Sumii, Kazuhiro Tanagawa, Kiyoteru Niina, Soichiro Mori, Jorge Escorihuela, and Norio Shibata*

Angew. Chem. Int. Ed. 2023, e202307090

DOI:doi.org/10.1002/anie.202307090

研究室を主宰されている柴田 哲男 教授より羽田さんについてコメントを頂戴いたしました。

羽田君は、驚くべきレスポンスの早さと絶大なる信頼性を兼ね備えた学生です。今回の研究では、中心的な存在であった博士研究員が退職してしまいましたが、その後を羽田君が確実に引き継いでくれました。彼は必要な実験を迅速に進め、論文投稿後も審査委員からのコメントに対処するための追加実験も迅速かつ確実に行い、結果として研究を完成させることができました。更に、論文の著者校正段階でも彼は丁寧に読み、誤りを見つけることができるなど、単に迅速なだけでなく、全ての仕事に真摯に向き合ってくれる優秀な学生です。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

近年、医薬品や機能性材料の部分骨格として、直線的な連結素子が注目されています。p-置換ベンゼンやアセチレンはこれに該当する古くから知られる骨格ですが、近年ではBCPやcubaneといった非共役系の直線的連結素子が注目を集めています。中でもBCPを連結素子として用いた化合物の合成法に関する論文は、ここ数年で一挙に開花しており、毎日のように見かけます。当研究室でも数年前より、非共役の直線的連結素子に興味を持って研究を展開していますが、これまでの直線的連結素子の範疇には入らない、テトラフルオロスルファニル(SF4)部位に着目し、研究に取り組んでいます(下図a)。SF4による直線的な連結部位を持つ化合物は、1950年代に既に知られていましたが、合成法の難しさから十分に研究が進んでいませんでした。当研究室では最近、芳香環とアセチレンがSF4を介して結合した化合物1の合成に成功しました(下図b)。本研究では1を原料とし、芳香環と、エナミン及びビニルエーテルがSF4を介して連結した、新規SF4化合物群の開発に成功しました(下図c)。通常、アセチレン部位への求核付加反応は、触媒によるアセチレン部位の活性化が必要となります。一方で本研究では、SF4部位が持つ強力な電子求引性のためにアセチレン部位の電子密度が極端に低く、触媒による活性化は困難です。そこで、DMSOとtBuOKを組み合わせて超塩基を発生させ、脱プロトン化された求核種の求核性を極限まで高めることでこの問題を解決し、β位選択的かつZ体選択的に化合物を得ることに成功しました(下図d)。本研究で得られた特異な新規SF4化合物群もまた、医薬品や機能性材料への応用が期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

DMSOtBuOKの組み合わせから、tBuOアニオンを完全に裸にすることによって塩基性を高めたところです。そもそもDMSO中でtBuOKやKOHの塩基性は非常に高くなることは知られていましたが、その考察は十分ではありませんでした。私たちは計算化学から、6つのDMSOによってKカチオンが完全にカプセル化されることで、超塩基が発生することを見つけました。この考え方は、以前、Chem-Stationで紹介していただいた、当研究室の斎藤らがフルオロホルムを脱プロトンさせる際、tBuOKがグリム系溶媒によってカプセル化されて塩基性を極限まで高めたことにヒントを得ています。

また、特定の基質に対する副反応を完全に克服出来たことに思い入れがあります。ピリジン上のSF4の置換位置が異なる化合物は、SF4化合物の基質適用範囲を示す上で欠かせない基質です。本研究は求核付加反応ということもあり、pyrazoleなどの比較的小さいアミンを用いると、アセチレン部位だけでなくピリジン上のフッ素への芳香族求核置換反応(SNAr)による副生成物が確認されました。そこで、より大きいアミンであるcarbazoleを用いたところSNArによる副生成物は全く確認されず、目的の化合物のみを収率良く得ることに成功しました(下図)。単純な解決策ではありますが、本研究の価値を示す上で欠かせない基質であったので、綺麗に反応が進行した時は達成感を感じました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

不安定な化合物の取り扱いに苦戦しました。そもそもSF4部位は繊細であり、SF4の隣に、ピリジンや、電子求引性基もしくはハロゲンが置換したベンゼンを導入している理由は、化合物の安定化と深く関係しています。本研究で得られた化合物も、精製過程のカラム中で分解してしまうものや、NMRの測定中に分解してしまうものも少なからず見受けられました。迅速なカラム精製や測定に使用する重溶媒の変更など、微妙な操作の改善によって、化合物の精製から測定までを無事に行うことが出来ました。中には3回以上再合成を行った化合物もありましたが、無事にデータ測定を終えた時は安心しました。

Q4. 将来は化学とどう関わっていきたいですか?

私は化学メーカーに内定を頂いており、来年4月からは企業で研究職として勤めます。有機合成化学とは異なる分野で研究開発を行うことにはなりますが、柴田研究室で研究に取り組んだからこそ感じることの出来た達成感や研究の面白さを糧に、今後も化学を通して社会に貢献し、人々の生活を豊かにすることが出来るような研究者として活躍したいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで目を通していただき、ありがとうございました。本研究で紹介したSF4化合物は、有機化学に携わっている方を含め、初めて目にする方も少なくはないと思います。そんな中、このように多くの方にSF4化合物を知っていただける機会を頂けたことを、大変嬉しく思います。マイナーな化合物ですが、マイナーであるからこそ、その可能性は未知数であり、非常に面白く興味深い化合物です。これを機に、皆さんにSF4化合物に興味を持っていただけたら嬉しいです。

最後になりますが、本研究は指導教員である柴田哲男教授、反応を見つけた博士研究員のAggarwal博士、共に研究を進めてくれた後輩の村田裕祐君、ご助言を賜りました住井裕司准教授、支えてくれた研究室のメンバーなど、恵まれた環境があったからこそ成し遂げることが出来ました。この場を借りて、深く感謝申し上げます。

また、このような素敵な機会を設けてくださいましたChem-Stationスタッフの皆様に感謝申し上げます。

研究者の略歴

名前:羽田 謙志郎(はだ けんしろう)

所属:名古屋工業大学大学院工学研究科生命・応用化学系プログラム 柴田研究室 博士前期課程2年

研究テーマ:医薬品を志向した新規テトラフルオロスルファニル化合物の開発

経歴:

2022年3月 名古屋工業大学 工学部 生命・物質化学分野 卒業

2023年7月 名古屋工業大学大学院工学研究科生命・応用化学系プログラム 博士前期課程 在籍

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 実験計画・試行錯誤プラットフォームmiHubの大型アップデートの…
  2. 今さら聞けないカラムクロマト
  3. 「オプトジェネティクス」はいかにして開発されたか
  4. 2012年Wolf化学賞はナノケミストリーのLieber博士,A…
  5. SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?
  6. 生体組織を人工ラベル化する「AGOX Chemistry」
  7. Q&A型ウェビナー マイクロ波化学質問会
  8. ちょっとした悩み

注目情報

ピックアップ記事

  1. コロナウイルスが免疫システムから逃れる方法(1)
  2. 2010年人気記事ランキング
  3. 世界の中分子医薬品市場について調査結果を発表
  4. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・オルガノゲル・スマネン
  5. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  6. 元素紀行
  7. エリック・ソレンセン Eric J. Sorensen
  8. Retraction watch リトラクション・ウオッチ
  9. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎と実験データの把握-
  10. 2017年10大化学ニュース

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP