[スポンサーリンク]

スポットライトリサーチ

直線的な分子設計に革新、テトラフルオロスルファニル化合物―特許性の高い化学材料としての活躍に期待―

[スポンサーリンク]

第550回のスポットライトリサーチは、名古屋工業大学大学院工学研究科生命・応用化学系プログラム 柴田研究室の羽田 謙志郎(はだ けんしろう)さんにお願いしました。

柴田研究室では、含フッ素化合物の新規合成法の開発および機能開拓をメインテーマとして取り組んでいます。本プレスリリースの研究内容は、テトラフルオロスルファニル(SF4)基を持つ新しい化合物の合成についてです。本研究グループは、六価の超原子価硫黄に4つのフッ素(F)原子が結合したテトラフルオロスルファニル(SF4)部位を連結素子とした、芳香環とエナミンが非共役的に直線連結した新しい分子骨格の創出に成功しました。この研究成果は、「Angewandte Chemie International Edition」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

Regio- and Z-Selective Alkyne Hydroamination and Hydrophenoxylation using Tetrafluoro-λ6– Sulfanyl Alkynes under Superbasic, Naked Anion Conditions

Trapti Aggarwal, Kenshiro Hada, Yusuke Murata, Yuji Sumii, Kazuhiro Tanagawa, Kiyoteru Niina, Soichiro Mori, Jorge Escorihuela, and Norio Shibata*

Angew. Chem. Int. Ed. 2023, e202307090

DOI:doi.org/10.1002/anie.202307090

研究室を主宰されている柴田 哲男 教授より羽田さんについてコメントを頂戴いたしました。

羽田君は、驚くべきレスポンスの早さと絶大なる信頼性を兼ね備えた学生です。今回の研究では、中心的な存在であった博士研究員が退職してしまいましたが、その後を羽田君が確実に引き継いでくれました。彼は必要な実験を迅速に進め、論文投稿後も審査委員からのコメントに対処するための追加実験も迅速かつ確実に行い、結果として研究を完成させることができました。更に、論文の著者校正段階でも彼は丁寧に読み、誤りを見つけることができるなど、単に迅速なだけでなく、全ての仕事に真摯に向き合ってくれる優秀な学生です。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

近年、医薬品や機能性材料の部分骨格として、直線的な連結素子が注目されています。p-置換ベンゼンやアセチレンはこれに該当する古くから知られる骨格ですが、近年ではBCPやcubaneといった非共役系の直線的連結素子が注目を集めています。中でもBCPを連結素子として用いた化合物の合成法に関する論文は、ここ数年で一挙に開花しており、毎日のように見かけます。当研究室でも数年前より、非共役の直線的連結素子に興味を持って研究を展開していますが、これまでの直線的連結素子の範疇には入らない、テトラフルオロスルファニル(SF4)部位に着目し、研究に取り組んでいます(下図a)。SF4による直線的な連結部位を持つ化合物は、1950年代に既に知られていましたが、合成法の難しさから十分に研究が進んでいませんでした。当研究室では最近、芳香環とアセチレンがSF4を介して結合した化合物1の合成に成功しました(下図b)。本研究では1を原料とし、芳香環と、エナミン及びビニルエーテルがSF4を介して連結した、新規SF4化合物群の開発に成功しました(下図c)。通常、アセチレン部位への求核付加反応は、触媒によるアセチレン部位の活性化が必要となります。一方で本研究では、SF4部位が持つ強力な電子求引性のためにアセチレン部位の電子密度が極端に低く、触媒による活性化は困難です。そこで、DMSOとtBuOKを組み合わせて超塩基を発生させ、脱プロトン化された求核種の求核性を極限まで高めることでこの問題を解決し、β位選択的かつZ体選択的に化合物を得ることに成功しました(下図d)。本研究で得られた特異な新規SF4化合物群もまた、医薬品や機能性材料への応用が期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

DMSOtBuOKの組み合わせから、tBuOアニオンを完全に裸にすることによって塩基性を高めたところです。そもそもDMSO中でtBuOKやKOHの塩基性は非常に高くなることは知られていましたが、その考察は十分ではありませんでした。私たちは計算化学から、6つのDMSOによってKカチオンが完全にカプセル化されることで、超塩基が発生することを見つけました。この考え方は、以前、Chem-Stationで紹介していただいた、当研究室の斎藤らがフルオロホルムを脱プロトンさせる際、tBuOKがグリム系溶媒によってカプセル化されて塩基性を極限まで高めたことにヒントを得ています。

また、特定の基質に対する副反応を完全に克服出来たことに思い入れがあります。ピリジン上のSF4の置換位置が異なる化合物は、SF4化合物の基質適用範囲を示す上で欠かせない基質です。本研究は求核付加反応ということもあり、pyrazoleなどの比較的小さいアミンを用いると、アセチレン部位だけでなくピリジン上のフッ素への芳香族求核置換反応(SNAr)による副生成物が確認されました。そこで、より大きいアミンであるcarbazoleを用いたところSNArによる副生成物は全く確認されず、目的の化合物のみを収率良く得ることに成功しました(下図)。単純な解決策ではありますが、本研究の価値を示す上で欠かせない基質であったので、綺麗に反応が進行した時は達成感を感じました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

不安定な化合物の取り扱いに苦戦しました。そもそもSF4部位は繊細であり、SF4の隣に、ピリジンや、電子求引性基もしくはハロゲンが置換したベンゼンを導入している理由は、化合物の安定化と深く関係しています。本研究で得られた化合物も、精製過程のカラム中で分解してしまうものや、NMRの測定中に分解してしまうものも少なからず見受けられました。迅速なカラム精製や測定に使用する重溶媒の変更など、微妙な操作の改善によって、化合物の精製から測定までを無事に行うことが出来ました。中には3回以上再合成を行った化合物もありましたが、無事にデータ測定を終えた時は安心しました。

Q4. 将来は化学とどう関わっていきたいですか?

私は化学メーカーに内定を頂いており、来年4月からは企業で研究職として勤めます。有機合成化学とは異なる分野で研究開発を行うことにはなりますが、柴田研究室で研究に取り組んだからこそ感じることの出来た達成感や研究の面白さを糧に、今後も化学を通して社会に貢献し、人々の生活を豊かにすることが出来るような研究者として活躍したいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで目を通していただき、ありがとうございました。本研究で紹介したSF4化合物は、有機化学に携わっている方を含め、初めて目にする方も少なくはないと思います。そんな中、このように多くの方にSF4化合物を知っていただける機会を頂けたことを、大変嬉しく思います。マイナーな化合物ですが、マイナーであるからこそ、その可能性は未知数であり、非常に面白く興味深い化合物です。これを機に、皆さんにSF4化合物に興味を持っていただけたら嬉しいです。

最後になりますが、本研究は指導教員である柴田哲男教授、反応を見つけた博士研究員のAggarwal博士、共に研究を進めてくれた後輩の村田裕祐君、ご助言を賜りました住井裕司准教授、支えてくれた研究室のメンバーなど、恵まれた環境があったからこそ成し遂げることが出来ました。この場を借りて、深く感謝申し上げます。

また、このような素敵な機会を設けてくださいましたChem-Stationスタッフの皆様に感謝申し上げます。

研究者の略歴

名前:羽田 謙志郎(はだ けんしろう)

所属:名古屋工業大学大学院工学研究科生命・応用化学系プログラム 柴田研究室 博士前期課程2年

研究テーマ:医薬品を志向した新規テトラフルオロスルファニル化合物の開発

経歴:

2022年3月 名古屋工業大学 工学部 生命・物質化学分野 卒業

2023年7月 名古屋工業大学大学院工学研究科生命・応用化学系プログラム 博士前期課程 在籍

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. Spiber株式会社ってどんな会社?
  2. 人工DNAから医薬をつくる!
  3. 個性あるジャーナル表紙
  4. 乙卯研究所 研究員募集 2022年度
  5. 宇宙に漂うエキゾチックな星間分子
  6. 細胞の中を旅する小分子|第三回(最終回)
  7. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  8. 遷移金属を用いない脂肪族C-H結合のホウ素化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 肥満防止の「ワクチン」を開発 米研究チーム
  2. 嘘か真かヒトも重水素化合物をかぎわける
  3. 1,3-ジエン類のcine置換型ヘテロアリールホウ素化反応
  4. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シン脱離)ー
  5. 第11回 有機エレクトロニクス、分子からデバイスまで – John Anthony教授
  6. ケムステV年末ライブ2022を開催します!
  7. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  8. 有機化学を俯瞰する -有機化学の誕生から21世紀まで–【後編】
  9. アメリカ化学留学 ”大まかな流れ 編”
  10. 李昂 Ang Li

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

UBEの新TVCM『ストーリーを変える、ケミストリー』篇、放映開始

UBE株式会社は、2023年9月1日より、新TVCM『ストーリーを変える、ケミストリー』篇を関東エリ…

有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物

有機合成化学協会が発行する有機合成化学協会誌、2023年9月号がオンライン公開されています。…

ペプチドの精密な「立体ジッパー」構造の人工合成に成功

第563回のスポットライトリサーチは、東京大学大学院 工学系研究科応用化学専攻 藤田研究室の恒川 英…

SNS予想で盛り上がれ!2023年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 10月4日(水) 18時45…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP