[スポンサーリンク]

化学者のつぶやき

CO2を用いるアルキルハライドの遠隔位触媒的C-Hカルボキシル化

[スポンサーリンク]

カタロニア化学研究所・Ruben Martinらは、臭化アルキルを基質とし、Br基から遠隔位のC(sp3)-H結合をカルボキシル基へと変換する触媒系の開発に成功した。炭素源として二酸化炭素(CO2)を使用することが出来、温和な条件下、高い官能基許容性を誇る。位置選択性を条件次第でスイッチできることも特徴である。

“Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide”
Julia-Hernandez, F.; Moragas, T.; Cornella, J.; Martin, R.* Nature 2017, 545, 84-88. doi:10.1038/nature22316

問題設定と解決した点

 C(sp3)-H結合活性化を経てC-C結合を作る研究は近年盛んに行われている。数多くのC(sp3)-H結合が存在する分子において、官能基遠隔位における位置選択性の発現[1]は極めてチャレンジングな課題である。現在までに、

  1. 分子内で最も弱いC(sp3)-Hを活性化する手法
  2. 配向基を用いて特定のC(sp3)-Hを活性化する手法

によりこれは達成されてきた。

 とりわけ末端メチル基のC-Hカルボキシル化に関しては、高価な金属Zrを当量用いる手法に限られていたが、Martinらはニッケル触媒を用いた末端炭素のカルボキシル化に成功し、C(sp3)-H修飾法の幅を大きく広げた。

技術や手法の肝

 C(sp3)-X結合を標的とするカップリング反応では、β-ヒドリド脱離が競合することが高収率で反応を進行させることを阻んでおり、一般的課題とされている。

 Martinらはあえてβ-ヒドリド脱離を促進させるNi触媒を設計することで、chain-walking過程[1,2]を促進し、遠隔位でのC-C結合形成が達成できると考えた。

主張の有効性の検証

①反応条件の最適化

 2-bromoheptaneからCO2雰囲気下でカルボキシル化を行うべく、検討を行った。その結果、配位場周りに長鎖立体障害(ヘキセニル基)をもつ配位子L1、NiI2、還元剤としてMnの組み合わせが、冒頭図のような反応を高収率にて進行させることを見出した。Brの位置に関わらず末端の炭素にて反応するため、想定通りchain-walking過程を経て進行していると考えられる。

②基質一般性の評価

 エステル、ケトン、ニトリル、ヒドロキシル基、クロル基、トリフルオロメチルチオ基など、幅広い官能基許容性を示す。より反応性の高いベンジル位を分子内持つ化合物においても、末端選択的に反応が進行している。複数の一級C-Hが存在する基質においては、最も空いている場所で反応が進行している。

本手法がBr基の位置に関わらず末端炭素で反応が起こることを利用し、石油原料より得られるアルカン・アルケン混合物を臭素化したものに対し、精製過程を挟まず末端カルボン酸を直接合成できることを実証している。

③選択性のスイッチ

エステルやアミドを有する基質に対し、反応を低温(10℃)で行うと末端にて反応が、高温(42℃)で行うとカルボニルのα位にて反応が進行する。反応を高温で行うと、α,β-不飽和カルボニルなどの熱力学支配中間体を生じるためだと考察されている。

④反応機構に関する示唆

 ニッケルがchain-walkingする途中に不斉炭素を持つ化合物を用いても不斉がある程度保持されて反応が進行する。このことから、chain-walking過程においても基質がニッケルに配位した状態を保ちつつ進行していることが示唆された。

 また、2-bromoheptane-1,1,1-d3を用いて反応を行うと、重水素がC2位とC8位に混在して存在する。すなわち、Brから比較的遠隔位に存在するC-H結合を標的にしうることが示されている。

議論すべき点

  • 反応機構を考慮するに、脱離基を持つ化合物に関してはπ-アリル錯体を経由したオレフィン化の進行が懸念される。
  • 炭素鎖の短い基質においては、選択性が十分に出ていないことが課題といえる。
  • 本触媒機構に従う限り、COやCO2のようなNi-C結合に挿入可能な基質に適用が限られてしまう。

次に読むべき論文は?

  • 他金属でのchain-walkingを利用した反応[1, 2]
  • Ni触媒を用いた近代的反応の総説[3]

参考文献

  1. Vasseur, A.; Bruffaerts, J.; Marek, I. Nat. Chem. 2016, 8, 209. doi:10.1038/nchem.2445
  2. (a) He, Y.; Cai, Y.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 1061. DOI: 10.1021/jacs.6b11962 (b) Mei, T.-S.; Patel, H. H.; Sigman, M. S. Nature 2014, 508, 340. doi:10.1038/nature13231 (c) Hamasaki, T.; Aoyama, Y.; Kawasaki, J.; Kakiuchi, F.; Kochi, T. J. Am. Chem. Soc. 2015, 137, 16163. DOI: 10.1021/jacs.5b10804
  3. Tasker, S. Z.; Standley, E.; Jamison, T. F. A.Nature 2014, 509, 299. doi:10.1038/nature13274
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 香りの化学4
  2. 単純なアリルアミンから複雑なアリルアミンをつくる
  3. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参…
  4. グサリときた言葉
  5. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  6. 香りの化学2
  7. 有機反応を俯瞰する ー[1,2] 転位
  8. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 平田 義正 Yoshimasa Hirata
  2. ブラッテラキノン /blattellaquinone
  3. 5社とも増収 経常利益は過去最高
  4. 化学合成で「クモの糸」を作り出す
  5. フィッツナー・モファット酸化 Pfitzner-Moffatt Oxidation
  6. イヴァン・フック Ivan Huc
  7. 「イオンで農薬中和」は不当表示・公取委、米販2社に警告
  8. メソポーラスシリカ(3)
  9. 第13回 次世代につながる新たな「知」を創造するー相田卓三教授
  10. Pixiv発!秀作化学イラスト集【Part 2】

関連商品

注目情報

注目情報

最新記事

「日産化学」ってどんな会社?

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応

有機合成化学協会が発行する有機合成化学協会誌、2019年10月号がオンライン公開されました。…

有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)

以前お知らせしたとおり理系の理想の働き方を考える研究所「リケラボ」とコラボレーションして、特集記事を…

2019年ノーベル化学賞は「リチウムイオン電池」に!

スウェーデン王立科学アカデミーは9日、2019年のノーベル化学賞を、リチウムイオン電池を開発した旭化…

マテリアルズインフォマティクスでリチウムイオン電池の有機電極材料を探索する

第223回のスポットライトリサーチは、沼澤 博道さんにお願い致しました(トップ画像は論文から出典)。…

米陸軍に化学薬品検出スプレーを納入へ

米センサー・システムのフリアーシステムズは、化学兵器として使用されるマスタードガスなどを検出するスプ…

Chem-Station Twitter

PAGE TOP