[スポンサーリンク]

E

脱離反応 Elimination Reaction

[スポンサーリンク]

 

 概要

ひとつの分子から分子の一部である複数の原子(または原子団)が脱離して多重結合が形成される反応を、一般に脱離反応(Elimination
Reaction)
と呼ぶ。

脱離基に結合する炭素(α炭素)の隣接位(β位)にあるプロトン(β水素)が引き抜かれる反応形式をβ脱離反応、引き抜かれるプロトンと脱離基が同じ炭素上にある場合は、α脱離反応と呼ばれる。α脱離からはカルベンが生じる。

基本文献

 

反応機構

<β脱離の分類について>

脂肪族炭水素のβ脱離反応の機構は、以下のように大別される。

①一分子脱離反応(E1反応)

・SN1反応と同様に、まず脱離基が解離したカルボカチオン中間体を経て、その後塩基でプロトンが引き抜かれる二段階機構で進む。
・ 一般に脱離基の解離が律速段階である。反応速度は基質の濃度のみに依存し、塩基の濃度には非依存。1次の反応速度式で表される。
・条件によってはSN1反応やカチオン性転位(Wagner-Meerwein転位)などが競合する。

・カルボカチオンが十分安定である場合、配座の異性化が起こりうる。このため反応は立体特異的に進むことはない。

E1E2_2.gif

②二分子脱離反応(E2反応)

・塩基によるβ水素引きぬきと、脱離基の解離が同時(協奏的)に起こる場合、これをE2反応と呼称する。
・反応速度は基質と塩基に1次ずつ依存する、二次速度式で表される。
・α炭素間とβ炭素間が自由回転できるときは、脱離基Lとβ水素が同一平面状かつantiの位置にある立体配座(antiperiplanar)から脱離(anti脱離)が進行する。これはπ結合形成のための軌道の重なりが最大化されるためである。反応は立体特異的に進行する。
・反応速度は基質と塩基の濃度双方に1次ずつ依存する。すなわち、全体で反応速度は2次の速度式で表される。
・立体要請の小さな塩基を使った場合、しばしば求核置換(SN2反応)が競合する。

E1E2_4.gif
・配座の自由度が規制されてanti-periplanar配座が取れない場合、もしくは分子間でβ水素引きぬきが起こる特別な場合に関しては、synperiplanar配座からの脱離(syn脱離)が起こる。こちらもやはり軌道の重なりが最大化される。以下はその好例である。
E1E2_5.gif
③共役塩基一分子脱離反応(E1cB反応)

・上記二つとは異なり、まずβ水素が塩基によって引きぬかれてカルボアニオン中間体が生成し、脱離基がアニオンとして解離してアルケンを生成する機構。これを特にE1cB反応と呼ぶ。一般に脱離基Lの解離が律速段階である。

・カルボアニオンが安定である基質、脱離基の性能が良くない場合、β水素の酸性度が低い場合などに有意に起こる。例えばフルオロアルカンからのβ脱離、アルドール(βヒドロキシカルボニル)化合物の塩基性脱水反応などがその典型例となる。

E1E2_6.gif
<脱離の位置選択性について>

熱力学支配条件での位置選択性はZaitsev則、つまり置換数の多いアルケンができるように起こると説明される(参考:Angew.
Chem. Int. Ed.
2009, 48, 5724.
)。これはいわゆるMarkovnikov則の逆といえる。置換数が多いほどアルケンが熱力学的に安定である理由も、超共役(hyperconjugation)によって説明される。すなわち、アルケンのπ*軌道へと置換基のσ軌道からの電子が流れこむことによって安定化されるためである。

E1E2_3.gif
ただし、脱離基として嵩高い四級アンモニウムなどが脱離する場合や、立体要請の大きなt-BuOなどを塩基に用いる場合には、Zaitsev則に従わない生成物が主に生じてくる(Hofmann脱離)。

 

反応例

 

実験手順

 

実験のコツ・テクニック

 

参考文献

 

関連書籍

 

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ニトリルオキシドの1,3-双極子付加環化 1,3-Dipolar…
  2. コーンフォース転位 Cornforth Rearrangemen…
  3. ネバー転位 Neber Rearrangement
  4. 歪み促進逆電子要請型Diels-Alder反応 SPIEDAC …
  5. 1,2-/1,3-ジオールの保護 Protection of 1…
  6. 奈良坂・プラサード還元 Narasaka-Prasad Redu…
  7. ジュリア・リスゴー オレフィン合成 Julia-Lythgoe …
  8. カルボン酸の保護 Protection of Carboxyli…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アミン存在下にエステル交換を進行させる触媒
  2. ラスカー賞に遠藤章・東京農工大特別栄誉教授
  3. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  4. 名大の巽教授がIUPAC次期副会長に
  5. HACCP制度化と食品安全マネジメントシステムーChemical Times特集より
  6. 一流ジャーナルから学ぶ科学英語論文の書き方
  7. 福山アミン合成 Fukuyama Amine Synthesis
  8. 地方の光る化学企業 ~根上工業殿~
  9. 有機化学者の仕事:製薬会社
  10. 【10周年記念】Chem-Stationの歩み

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年1月
« 12月   2月 »
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開!

いまから約7年前の2015年10月。分子を愛する学生・研究者に悲報が届けられた。…

次世代型合金触媒の電解水素化メカニズムを解明!アルキンからアルケンへの選択的水素化法

第383回のスポットライトリサーチは、横浜国立大学大学院 理工学府 修士2年(研究当時)の野上 周嗣…

LG化学より発表されたプラスチックに関する研究成果

LG Chem develops advanced plastic materials …

経験の浅い医療系技術者でも希望にかなう転職を実現。 専門性の高い職種にこそ求められる「ビジョンマッチング」

「人財躍動化」をビジョンに掲げるAdecco Group Japanの人財紹介事業ブランドSprin…

創薬における中分子

ここ10年の間で、低分子・高分子の間の化合物の分類として 中分子 という言葉が台頭し…

ポンコツ博士の海外奮闘録⑦〜博士,鍵反応を仕込む〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発

第 382回のスポットライトリサーチは、金沢大学大学院 医薬保健総合研究科 創薬科学…

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP