[スポンサーリンク]

E

脱離反応 Elimination Reaction

[スポンサーリンク]

 

 概要

ひとつの分子から分子の一部である複数の原子(または原子団)が脱離して多重結合が形成される反応を、一般に脱離反応(Elimination
Reaction)
と呼ぶ。

脱離基に結合する炭素(α炭素)の隣接位(β位)にあるプロトン(β水素)が引き抜かれる反応形式をβ脱離反応、引き抜かれるプロトンと脱離基が同じ炭素上にある場合は、α脱離反応と呼ばれる。α脱離からはカルベンが生じる。

基本文献

 

反応機構

<β脱離の分類について>

脂肪族炭水素のβ脱離反応の機構は、以下のように大別される。

①一分子脱離反応(E1反応)

・SN1反応と同様に、まず脱離基が解離したカルボカチオン中間体を経て、その後塩基でプロトンが引き抜かれる二段階機構で進む。
・ 一般に脱離基の解離が律速段階である。反応速度は基質の濃度のみに依存し、塩基の濃度には非依存。1次の反応速度式で表される。
・条件によってはSN1反応やカチオン性転位(Wagner-Meerwein転位)などが競合する。

・カルボカチオンが十分安定である場合、配座の異性化が起こりうる。このため反応は立体特異的に進むことはない。

E1E2_2.gif

②二分子脱離反応(E2反応)

・塩基によるβ水素引きぬきと、脱離基の解離が同時(協奏的)に起こる場合、これをE2反応と呼称する。
・反応速度は基質と塩基に1次ずつ依存する、二次速度式で表される。
・α炭素間とβ炭素間が自由回転できるときは、脱離基Lとβ水素が同一平面状かつantiの位置にある立体配座(antiperiplanar)から脱離(anti脱離)が進行する。これはπ結合形成のための軌道の重なりが最大化されるためである。反応は立体特異的に進行する。
・反応速度は基質と塩基の濃度双方に1次ずつ依存する。すなわち、全体で反応速度は2次の速度式で表される。
・立体要請の小さな塩基を使った場合、しばしば求核置換(SN2反応)が競合する。

E1E2_4.gif
・配座の自由度が規制されてanti-periplanar配座が取れない場合、もしくは分子間でβ水素引きぬきが起こる特別な場合に関しては、synperiplanar配座からの脱離(syn脱離)が起こる。こちらもやはり軌道の重なりが最大化される。以下はその好例である。
E1E2_5.gif
③共役塩基一分子脱離反応(E1cB反応)

・上記二つとは異なり、まずβ水素が塩基によって引きぬかれてカルボアニオン中間体が生成し、脱離基がアニオンとして解離してアルケンを生成する機構。これを特にE1cB反応と呼ぶ。一般に脱離基Lの解離が律速段階である。

・カルボアニオンが安定である基質、脱離基の性能が良くない場合、β水素の酸性度が低い場合などに有意に起こる。例えばフルオロアルカンからのβ脱離、アルドール(βヒドロキシカルボニル)化合物の塩基性脱水反応などがその典型例となる。

E1E2_6.gif
<脱離の位置選択性について>

熱力学支配条件での位置選択性はZaitsev則、つまり置換数の多いアルケンができるように起こると説明される(参考:Angew.
Chem. Int. Ed.
2009, 48, 5724.
)。これはいわゆるMarkovnikov則の逆といえる。置換数が多いほどアルケンが熱力学的に安定である理由も、超共役(hyperconjugation)によって説明される。すなわち、アルケンのπ*軌道へと置換基のσ軌道からの電子が流れこむことによって安定化されるためである。

E1E2_3.gif
ただし、脱離基として嵩高い四級アンモニウムなどが脱離する場合や、立体要請の大きなt-BuOなどを塩基に用いる場合には、Zaitsev則に従わない生成物が主に生じてくる(Hofmann脱離)。

 

反応例

 

実験手順

 

実験のコツ・テクニック

 

参考文献

 

関連書籍

 

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. メーヤワイン アリール化反応 Meerwein Arylatio…
  2. モッシャー法 Mosher Method
  3. チャン・ラム・エヴァンス カップリング Chan-Lam-Eva…
  4. エステル、アミド、ニトリルの金属水素化物による部分還元 Par…
  5. シリル系保護基 Silyl Protective Group
  6. NHPI触媒によるC-H酸化 C-H Oxidation wit…
  7. フィッシャー・スペイア エステル合成 Fischer-Speie…
  8. コールマン試薬 Collman’s Reagent

注目情報

ピックアップ記事

  1. トシルヒドラゾンを経由するカルボニル化合物の脱酸素ヒドロフッ素化反応によるフルオロアルカンの合成
  2. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  3. 吉見 泰治 Yasuharu YOSHIMI
  4. EUのナノマテリアル監視機関が公式サイトをオープン
  5. ムレキシド反応 Murexide reaction
  6. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる: TA 奮闘記 その 1】
  7. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  8. 量子の力で生体分析!?シングレット・フィッションを用いたNMR感度の増大
  9. まず励起せんと(EnT)!光触媒で環構築
  10. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull Method for Determination of Enantiomeric Excess

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年1月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP