[スポンサーリンク]

化学者のつぶやき

太陽光変換効率10%での人工光合成を達成

[スポンサーリンク]

太陽光エネルギーの効率的な変換は21世紀において最も重要な研究テーマの一つであり、世界中で高効率化の競争が行われています。特に人工光合成、つまり水とCO2のみから太陽光エネルギーで有機物に変換する反応はまさに夢の反応の一つです。この反応は世界に先駆けて日本で初めて実証されましたが、残念なことに変換効率は0.04%程度でした。[1]

今回、パーソナライズド・エナジー構想で知られるHarvard大、D. Nocera教授のグループが中心となり、太陽光変換効率が7.1-9.7%でポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを選択的に生成が可能なシステムを開発しScience誌に掲載されました。

“Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213.”

 

報告された人工光合成の仕組み

今回の報告では2種類の電極(Co-P合金とリン酸コバルト)による水分解によって得られるH2を使い、Ralstonia eutrophaという菌によってCO2を有機物に変換しています。[2] 下の図1に示すように、水分解(H2O => H+ O2)は陽極側で水が酸化され(2H2O => 4H+ O+ 4e)、この際生じる電子が陰極側へ運ばれH+を還元し水素を生成(4H++4e=>2H2)します。つまり、水素生成量は回路に流れる電流と相関があり、図2に示すようにCo-P合金は他の電極に比べ(絶対値が)大きい電流が得られており、水素生成活性が高い事が分かります。これによって大量のH2を作り出し、細菌による有機物合成を促進させることができます。また驚くことに、少なくとも16日間はCo-P電極の活性低下はほぼ見られませんでした。

1

図1.電極を用いた水分解(文献[2]のFigure 1Aより)

2

図2.異なる電極によるバイアス電圧に対して得られる電流値(文献[2]のFigure 1Bより)

細菌による有機物生成を最大化する

Co-P合金の水素生成活性が高い事は図2に示す通りですが、この電極最大の特徴はH2とCO2から有機物を生成する細菌に対して”優しい”ことです。図1に示す様に陰極でH+が還元されるのですがこれによって水素だけでなく、細菌を殺してしまうH2O2も生成される可能性があります。しかも水素酸化還元電位に対してH2O2生成(4H+ 4e– + O=> 2H2O2)の酸化還元電位は+0.5 eVなので、H2O2生成を抑えながらH2を生成するが非常に難しい事が分かります。ところが図3に示すようにCo-P合金電極からは全くH2O2が生成されていません。これによってCo-P電極上の細菌がH2O2によるダメージを受けず、高活性が長期間維持できます。また細菌の種類によりH2とCO2を、ポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを効率40-50%程度で選択的に生成できます。

3

図3.異なる電極によって得られるH2O2(文献[2]のFigure 1Cより)

既存の太陽電池につなげば最大約10%の効率

このシステムにおいて、投入される電気エネルギーに対して得られる有機物の合計エネルギーの割合が最大54%になるので、既存の太陽電池(太陽光変換効率:18%)にこのシステムをつなげば太陽光エネルギーに対して9.7%の効率で有機物が得られます。今後、電極の改良によるさらなる高活性化や細菌の選択による選択性の向上、さらに生成物を連続的に分離できるシステムの開発が期待されます。

参考文献

  1.  Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T. M.; Tanaka, H.; Kajino, T., Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 2011, 133 (39), 15240-15243. DOI:10.1021/ja204881d
  2. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213. DOI:10.1126/science.aaf5039

関連書籍

関連リンク

Ohno

投稿者の記事一覧

博士(理学)。ナノ材料に関心があります。

関連記事

  1. 「神経栄養/保護作用を有するセスキテルペン類の全合成研究」ースク…
  2. 磁気ナノ粒子でガン細胞を選別する
  3. CAS Future Leaders Program 2022 …
  4. Carl Boschの人生 その1
  5. フッ化セシウムをフッ素源とする立体特異的フッ素化有機分子の合成法…
  6. 銀カルベノイドの金属特性を活用したフェノール類の不斉脱芳香族化反…
  7. ワンチップ顕微鏡AminoMEを買ってみました
  8. 光触媒に相談だ 直鎖型の一級アミンはアンモニア水とアルケンから

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第93回日本化学会付設展示会ケムステキャンペーン!Part III
  2. 臭素もすごいぞ!環状ジアリール-λ3-ブロマンの化学
  3. 萩反射炉
  4. 第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授
  5. AIで世界最高精度のNMR化学シフト予測を達成
  6. 加熱✕情熱!マイクロ波合成装置「ミューリアクター」四国計測工業
  7. がん細胞を狙い撃ち 田澤富山医薬大教授ら温熱治療新装置 体内に「鉄」注入、電磁波で加熱
  8. アセタール還元によるエーテル合成 Ether Synthesis by Reduction of Acetal
  9. フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~
  10. エドマン分解 Edman Degradation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP