[スポンサーリンク]

化学者のつぶやき

超原子価ヨウ素を触媒としたジフルオロ化反応

ヨウ素は容易に酸化されて原子価を拡張し、オクテット則を超える超原子価ヨウ素を形成します。

高い酸化能を有する超原子価ヨウ素は酸化剤(化学量論量使用)として頻用されてきました(図 1A)[1]。近年、超原子価ヨウ素(ヨウ化アリール)の触媒反応が研究されており、適切な酸化剤を組み合わせることで、触媒量のヨウ化アリールを用いるアルコールの酸化やオレフィンの二官能基化が達成されています(図 1B)[2]

例えば、Liらは2,4,6-トリメチルヨードベンゼンを触媒とするオレフィンのsyn選択的ジアセトキシ化を報告しました[3]。また、石原らはキラルなヨウ化アリールを触媒とすることで不斉反応へ応用できることが実証しています[4]

今回は、このような超原子価ヨウ素触媒を用いたオレフィンの二官能基化反応のうち、「ジフルオロ化反応」について紹介したいと思います。

 

2016-07-27_01-41-15

図1 (A) 超原子価ヨウ素試薬 (B) 超原子価ヨウ素触媒反応

 

オレフィンの直接的ジフルオロ化反応

オレフィンのジフルオロ化は有用なジフルオロアルカンが直接合成できるため、これまでに様々な条件が検討されています(図 2上)。この反応では従来、フッ素化剤としてフッ素ガスやフッ化キセノンが用いられてきましたが、これらは基質適用範囲が狭く、高価であるといった欠点がありました。

1998年、原らはこれらの問題を解決するフッ素化剤として超原子価ヨウ素が利用できることを報告しました[5]。しかし、この反応は–78 °Cという低温条件が必要であり、かつ超原子価ヨウ素を事前に調製する必要があります。

一方ごく最近、ヨウ化アリールを触媒とするオレフィンのジフルオロ化反応が3件報告されています(図2,)。2015年、北村らはスチレン誘導体からフッ素原子をジェミナル位に有するアルカンを直接的に合成する反応を報告しました[6]。さらに2016年、同時期にGilmourと Jacobsenによってビシナル位がフルオロ化されたジフルオロアルカンの合成法が報告されています[7]。今回はGilmourらの論文についてもう少し深く掘り下げてみます[8]

 

2016-07-27_01-42-05

図2 (上) オレフィンのジフルオロ化反応のフッ素化試薬 (下) 超原子価ヨウ素触媒を用いたジフルオロ化反応

 

Gilmourらによる触媒的ジフルオロ化反応

本反応ではp-ヨードトルエンにセレクトフルオロを作用させ、系中で超原子価ヨウ素を生成させており、p-ヨードトルエンの触媒化に成功しています。想定反応サイクルは以下の通りです(図 3)。

  1. セレクトフルオロにより、p-ヨードトルエン(1)が酸化され、三価の超原子価ヨウ素2が系中で生成
  2. 生成した2とオレフィンが反応することによってカチオン性中間体3が生じる
  3. 中間体3に対し、フッ素が求核攻撃することで中間体4を与える
  4. 最後に中間体4に再びフッ素が求核攻撃することによって、目的物5が生成すると同時にp-ヨードトルエン(1)が再生し、触媒サイクルが完結

 

2016-07-27_01-42-48

図3 触媒サイクル

まとめ

今回、超原子価ヨウ素触媒を用いたジフルオロアルカン合成を紹介しました。本手法は高価な超原子価ヨウ素試薬の事前調製を必要としないことに加えて、ヨウ化アリールを触媒量に低減することができます。また、GilmourおよびJacobsenは論文中でキラルヨウ化アリールを用いた不斉反応化の可能性を示しています。今後は、一般性の高い基質に対して、高い不斉収率を与える反応に改良されていくのでしょうか。

 

参考文献と補足

  1. Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656-3665. DOI: 10.1002/anie.200500115
  2. Singh, F. V.; Wirth, T. Chem. Asian. J. 2014, 9, 950-971. DOI: 10.1002/asia.201301582
  3. Zhong, W.; Liu, S.; Yang, J.; Meng, X.; Li, Z. Org. Lett. 2012, 14, 3336-3339. DOI: 10.1021/ol301311e
  4. Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413−417. DOI: 10.1002/anie.201507180
  5. Hara, S.; Nakahigashi, J.; Ishi-I, K.; Sawaguchi, M.; Fukuhara, T.; Yoneda, N. Synlett 1998, 1998, 495−496. DOI: 10.1055/s-1998-1714
  6. Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431-10436. DOI: 10.1021/acs.joc.5b01929 この想定反応機構は以下の通り。2016-07-27_01-44-25
  7. Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000-5003. DOI: 10.1021/jacs.6b02391 この想定反応機構は以下の通り。2016-07-27_01-44-56
  8. Molnár, G. I.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004-5007. DOI: 10.1021/jacs.6b01183

 

関連書籍

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。
bona

最新記事 by bona (全て見る)

関連記事

  1. 誰でも参加OK!計算化学研究を手伝おう!
  2. えれめんトランプをやってみた
  3. 第3回慶應有機合成化学若手シンポジウム
  4. 次なる新興感染症に備える
  5. “CN7-“アニオン
  6. 不安定炭化水素化合物[5]ラジアレンの合成と性質
  7. 天然物界70年の謎に終止符
  8. 無限の可能性を秘めたポリマー

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. ルーシェ還元 Luche Reduction
  2. ガッターマン・コッホ反応 Gattermann-Koch Reaction
  3. MIDAボロネートを活用した(-)-ペリジニンの全合成
  4. 第27回 生命活動の鍵、細胞間の相互作用を解明する – Mary Cloninger教授
  5. 1-トリフルオロメチル-3,3-ジメチル-1,2-ベンゾヨードキソール:1-Trifluoromethyl-3,3-dimethyl-1,2-benziodoxole
  6. コーヒーブレイク
  7. 高知・フュルストナー クロスカップリング Kochi-Furstner Cross Coupling
  8. FAMSO
  9. パーデュー大、10秒で爆薬を検知する新システムを開発
  10. ウーロン茶に新薬開発の夢 県立大グループが新成分発見

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

ケムステイブニングミキサー2017ー報告

先週の日本化学会年会に参加の方々お疲れ様でした。ケムステでは、例年通り「付設展示会ケムステキ…

芳香族カルボン酸をHAT触媒に応用する

ミュンスター大・Gloriusらは、可視光レドックス触媒を用いる位置選択的なC(sp3)-Hチオトリ…

日本薬学会第137年会  付設展示会ケムステキャンペーン

先日閉会した日本化学会年会。付設展示会では毎年恒例の付設展示会ケムステキャンペーンを行いました(Pa…

元素名と中国語

Eineです。化学を学ぶ人間が最初に直面する課題、それは元素周期表の暗記です。高校化学過程では第1元…

「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthner研より

「ケムステ海外研究記」の第11回目は、第10回目の赤松さんのご紹介で、名古屋大学大学院理学系研究科(…

ロバート・ノールズ Robert R. Knowles

ロバート・R・ノールズ(Robert R. Knowles, 19xx年x月x日(ニューヨーク生)-…

Chem-Station Twitter

PAGE TOP