[スポンサーリンク]

スポットライトリサーチ

水素ガス/酸素ガスで光特性を繰り返し変化させる分子

ついにスポットライトリサーチも第50回。今回は熊本大学大学院自然科学研究科・博士課程2年の浦川一樹さんにお願いしました。

浦川さんの所属される石川研究室は天然物の全合成研究を主体とする研究室。しかしながらその中にあって浦川さんのテーマは異色であり、ガスのレドックス特性に応答する蛍光分子の開発です。研究室内でメインストリームでない研究に取り組み、相談できる人も乏しいなかでなんとかかんとか形にしていくことの難しさは筆者にもよくよく実感できますが、直接指導されている石川勇人准教授の評からも、この点はおわかり頂けるのではないかと思います。

当研究室では主に天然物合成や反応開発をしているため、浦川君が研究室配属された時には、天然物を合成して製薬会社に行きたいと言っておりました。しかしながら、物理化学が得意であるということから、私たちの研究室で初めての材料科学に取り組んでもらいました。研究室でたった一人だけ材料科学という環境にもめげず、膨大な実験と勉強でこのプロジェクトを育ててくれました。世界に通用する科学者になりたいという熱い思いがあり、将来の活躍が楽しみな人材です。

しかしその中にあって研究成果は見事に実を結び、プレスリリースおよび論文として先日公開されました。

“Redox Switching of Orthoquinone-Containing Aromatic Compounds with Hydrogen and Oxygen Gas”
Urakawa, K.; Sumitomo, M.; Arisawa, M.; Matsuda, M.; Ishikawa, H. Angew. Chem. Int. Ed. 2016, 55, 7432. DOI: 10.1002/anie.201601906

見事取り組みを結実された浦川さんに、今回現場のお話を伺ってみました。ご覧ください!

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

多環芳香族化合物に導入したオルトキノン構造の還元反応と、還元後に生じるヒドロキノン構造の酸化反応を利用したレドックススイッチング技術を開発しました。このレドックススイッチングでは固体担持パラジウム触媒(SAPd)存在下、還元剤、酸化剤として水素、酸素ガスを用いています。それぞれの反応基質であるオルトキノン分子とヒドロキノン分子は異なる光学特性を示すため、対応するガスのバブリングにより、自在かつ明瞭に、色や蛍光を変化させることができます。また、反応剤としてガスを用いているため、試薬が反応系内に残存せず、水だけが副生し、加えて基質の損壊は観測されません。従って、繰り返し利用に優れた技術となっています。

図1. ピセン-13, 14-ジオン(1)とピセン-13, 14-ジオール(2)間でのガスを用いたレドックススイッチング; 1は、可視光条件下で黄色、紫外光照射条件下で無蛍光であるのに対し、2は、可視光条件下で無色、紫外光照射条件下で青色蛍光を示す

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本技術を開発するにあたり、基質として想定される分子は無限に考えられます。我々は、色、蛍光において、完全なON/OFF機能を示す理想的な分子を計算化学的手法で予測できないかと考えました。そこで、スイッチング分子候補化合物を選出し、合成に取り掛かる前にUV-Vis、蛍光スペクトルを算出しました。その結果、ピセン-13, 14-ジオン(1)とピセン-13, 14-ジオール(2)にたどり着きました。合成後、スイッチング特性を観察すると、図1に示したように、予測通りの挙動を示してくれました。一連の作業で本プロジェクトの効率性は大幅に向上したと考えています。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

光学特性が変化する要因を考察するのに時間を要しました。まず、オルトキノン1とヒドロキノン2の共役系の違いを確認するため、中央の環の芳香族性をNICS値により推定しました(図2)。その結果、1は中心の環が反芳香族性を示すのに対し2は芳香族性を示すことが証明されました。また、X線結晶構造解析において、1はオルトキノン部位で大きくねじれていました(図3)。共役系の要因だけでなく、このねじれ歪みが光学特性に影響しているのではと考え、同じ分子量で歪みの小さなペンタフェン-6, 7-ジオン(3)を合成し、その光学特性を評価しました。すると、1が無蛍光であるのに対し3は興味深い赤色固体蛍光を示すことが明らかとなりました。

sr_K_Urakawa_2

図2. ピセン-13, 14-ジオン(1)とピセン-13, 14-ジオール(2)のNICS値の算出

sr_K_Urakawa_3

図3.ペンタフェン-6, 7-ジオン(3)の特異な赤色蛍光とオルトキノン部位におけるねじれ歪み

 

Q4. 将来は化学とどう関わっていきたいですか?

私は、有機化学を多分野に応用することに魅力を感じています。自在に欲しい分子を合成し、また、全く新しい反応を開拓できることが有機化学の醍醐味であると考えますが、さらに、それら分子や反応を異なる視点から捉え、機能性材料分野や生化学分野で活用したいと考えています。そのために、有機化学以外の分野についても理解を深め、自由な発想で研究に取り組める人材になりたいと思っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は、分野横断型研究を行い、豊富な知識、技術以外にも柔軟な発想力が重要であると感じました。例えば、本研究で用いる接触還元、酸素酸化は、有機化学としてはよく知られている反応ですが、材料科学の観点から見れば、新技術として捉えることが出来ます。既知の技術でも、発想次第で魅力ある研究を展開できる可能性があります。また、有機化学分野の石川先生、物理化学分野の松田先生、計算化学分野の隅本先生、固体触媒化学分野の有澤先生から共同研究の中で、様々なことを教えて頂き、大きく成長できました。今後、さらに多分野間で様々な方と交流を行いたいので、学会等でディスカッションをよろしくお願いします。

 

関連リンク

 

研究者の略歴

sr_K_Urakawa_4浦川 一樹 (うらかわ かずき)

所属:熊本大学大学院自然科学研究科理学専攻化学講座 石川研究室

研究テーマ:オルトキノン含有多環芳香族化合物の合成と新機能創出

受賞歴: 日本化学会 第96春季年会 学生講演賞、第26回 万有福岡シンポジウム Best Poster賞

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. DOWとはどんな会社?-1
  2. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機…
  3. 磁石でくっつく新しい分子模型が出資募集中
  4. FT-IR・ラマン ユーザーズフォーラム 2015
  5. 橋頭位二重結合を有するケイ素化合物の合成と性質解明
  6. アルミニウム工業の黎明期の話 -Héroultと水力発電-
  7. 2010年ノーベル化学賞予想ーケムステ版
  8. 未踏の構造に魅せられて―ゲルセモキソニンの全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ダルツェンス縮合反応 Darzens Condensation
  2. ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification
  3. 資生堂:育毛成分アデノシン配合の発毛促進剤
  4. 【書籍】液晶の歴史
  5. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  6. 高知大が新エコ材料開発へ 産官共同プロジェクト
  7. 世界初!うつ病が客観的に診断可能に!?
  8. 福山アミン合成 Fukuyama Amine Synthesis
  9. ナトリウムトリス(1,1,1,3,3,3-ヘキサフルオロイソプロポキシ)ボロヒドリド:Sodium Tris(1,1,1,3,3,3-hexafluoroisopropoxy)borohydride
  10. 道修町ミュージアムストリート

関連商品

注目情報

注目情報

最新記事

DNAを切らずにゲノム編集-一塩基変換法の開発

ゲノム編集といえば、今流行りのCRISPR/Cas9を思い浮かべる方が多いと思います。CRISPR/…

文献管理ソフトを徹底比較!

今や、科学者向けの文献管理ソフトはよりどりみどりだ。その中から代表的な8つを検討した。タイト…

君はPHOZONを知っているか?

唐突ですがスマホでゲームやりますか?筆者はファミコン世代ということもあり、様々なゲームをやってき…

ゴードン会議に参加して:ボストン周辺滞在記 Part II

ゴードン会議の参加体験記とボストン周辺の滞在記について書いています。さて、前回のPart I…

ジスルフィド架橋型タンパク質修飾法 Disulfide-Bridging Protein Modification

システイン(Cysteine, Cys)を標的とするタンパク質修飾法はその信頼性から盛んに用いられて…

ACSで無料公開できるかも?論文をオープンにしよう

科学のオープン化推進の試みが各国で進められており、日本でも研究成果を基本的に全面公開しようとする動き…

Chem-Station Twitter

PAGE TOP