[スポンサーリンク]

A

ボロン酸触媒によるアミド形成 Amide Formation Catalyzed by Boronic Acids

[スポンサーリンク]

概要

カルボン酸とアミンからアミドを形成する手法は、さまざまな応用が期待できる最重要反応の一つである。特に市販医薬の25%はアミドを含み、創薬化学研究で使用される化学反応の16%はアミド形成反応とされる。

従来型の方法は強酸加熱条件の使用、酸ハライドなどへの活性化、当量以上の縮合剤の使用など、条件の穏和さやアトムエコノミーの観点で諸々問題がある。そのような観点から、アミド結合形成を促進させる触媒的手法の開発が長年にわたり検討されている。触媒量を極少化出来れば、理想的には水のみを廃棄物に出来るため、高効率的反応への展開が期待できるためである。なかでもボロン酸触媒を用いる手法は毒性の懸念もなく、最有力な方法として注目を集めている。

基本文献

<mechanistic discussions>
  • Arnold, K.; Davies, B.; Giles, R. L.; Grosjean, C.; Smith, G. E.; Whiting, A. Adv. Synth. Catal. 2006, 348, 813. doi: 10.1002/adsc.200606018
  • Marcelli, T. Angew. Chem. Int. Ed. 2010, 49, 6840. doi:10.1002/anie.201003188
  • Wang, C.; Yu, H.-Z.; Fu, Y.; Guo, Q.-X. Org. Biomol. Chem. 2013, 11, 2140. doi:10.1039/C3OB27367A
  • Arkhipenko, S.; Sabatini, M. T.; Batsanov, A. S.; Karaluka, V.; Sheppard, T. D.; Rzepa, H. S.; Whiting, A. Chem. Sci. 2018, 9, 1058. doi:10.1039/C7SC03595K
<review>
  • Zhang, H.; Hall, D. G. Aldrichimica Acta 2014, 47, 41. [website]
  • Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev. 2014, 43, 2714. DOI: 10.1039/c3cs60345h
  • de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029. DOI: 10.1021/acs.chemrev.6b00237
<importance of amide bond formation in medicinal chemistry>
  • Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55. DOI: 10.1021/cc9800071
  • Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451. DOI: 10.1021/jm200187y
  • Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702

反応機構

研究初期より、カルボン酸と触媒から動的生成するアシルオキシボロン酸中間体が活性種と提唱されてきた。


しかしながら最近の機構解析研究により、下記の二核ボロン酸-カルボン酸複合体が活性種であることが提唱されている(Chem. Sci. 2018, 9, 1058.)。

反応例

Hallらは、電子的にチューニングを施したボロン酸触媒が、室温下にアミド形成反応を進行させることを報告している[1]。


柴﨑・熊谷らは、ヘテロ原子のみから成る安定な1,3-dioxa-5-aza-2,4,6-triborinane芳香環(DATB)が、アミド形成反応を強力に促進することを見いだしている[2]。epi化しやすいバリンC末端でも立体化学を損なうことなく反応が進行する。ペプチド伸長にも適用可能。NMR実験などから下記遷移状態に基づく反応機構が提唱されている。

参考文献

  1. (a) Al‐Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem. Int. Ed. 2008, 47, 2876. doi:10.1002/anie.200705468 (b) Gernigon, N.; Al-Zoubi, R. M.; Hall, D. G. J. Org. Chem. 2012, 77, 8386. DOI: 10.1021/jo3013258
  2. (a) Noda, H.; Furutachi, M.; Asada, Y.; Shibasaki, M.; Kumagai, N. Nat. Chem. 2017, 9, 571. doi:10.1038/nchem.2708 (b) Liu, Z.; Noda, H.; Shibasaki, M.; Kumagai, N. Org. Lett. 2018, 20, 612. DOI: 10.1021/acs.orglett.7b03735

関連反応

関連書籍

[amazonjs asin=”3527332146″ locale=”JP” title=”Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials”]

ケムステ内関連記事

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ダンハイザー環形成反応 Danheiser Annulation…
  2. 植村酸化 Uemura Oxidation
  3. コールマン試薬 Collman’s Reagent
  4. ミズロウ・エヴァンス転位 Mislow-Evans Rearra…
  5. 四酸化ルテニウム Ruthenium Tetroxide (Ru…
  6. 野依不斉水素化反応 Noyori Asymmetric Hydr…
  7. ウルツ反応 Wurtz Reaction
  8. ハートウィグ ヒドロアミノ化反応 Hartwig Hydroam…

注目情報

ピックアップ記事

  1. 信越化学、塩化ビニル樹脂を値上げ
  2. プリリツェフ エポキシ化 Prilezhaev Epoxidation
  3. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  4. 不活性アルケンの分子間[2+2]環化付加反応
  5. バートン・ザード ピロール合成 Barton-Zard Pyrrole Synthesis
  6. PACIFICHEM2010に参加してきました!①
  7. 第35回 生物への応用を志向した新しいナノマテリアル合成― Mark Green教授
  8. マテリアルズ・インフォマティクス解体新書:ビジネスリーダーのためのガイド
  9. アカデミアケミストがパパ育休を取得しました!
  10. シクロヘキサンの片面を全てフッ素化する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年6月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP