[スポンサーリンク]

G

ギース ラジカル付加 Giese Radical Addition

[スポンサーリンク]

概要

ハロゲン・カルコゲニド化合物・Bartonエステルなどとラジカル開始剤から生成する炭素ラジカルは求核的性質を帯び、様々な捕捉剤と反応する。

とりわけ電子不足アルケンとの反応によって炭素-炭素結合を形成する反応を、Giese反応と呼ぶ。生じる求核的α炭素ラジカルをさらに活用することで、タンデム型反応にも適用できる。

天然物合成においてはとりわけ分子内環化反応での活用例が多い。

 

基本文献

  •  Giese, B.; Gonzalez-Gomez, J. A.; Witzel, T. Angew. Chem. Int. Ed. Engl. 1984, 23, 69. DOI: 10.1002/anie.198400691

<review>

<Radical reaction for complex molecule synthesis>

反応機構

Giese_radical_2

 

反応例

有機テルルを用いるタンデム型Giese反応[1]:きわめて混み合った多官能基性化合物を合成できる。

Giese_5

可視光レドックス触媒条件によって混み合った炭素-炭素結合を作り出す手法(岡田-Overman法)[2]

Giese_6

一酸化炭素雰囲気下で行うことでカルボニル挿入を伴った変換が行える。[3, 4]

Giese_radical_3

参考文献

[1] Kamimura, D.; Urabe, D.; Nagatomo, M.; Inoue, M. Org. Lett. 2013, 15, 5122. DOI: 10.1021/ol402563v
[2] (a) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401. DOI: 10.1021/ja00024a074 (b) Schnermann, M. J.; Overman, L. E. Angew. Chem. Int. Ed. 2012, 51, 9576. DOI: 10.1002/anie.201204977 (c) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342. DOI: 10.1021/ja408971t
[3] Miura, K.; Tojino, M.; Fujisawa, N.; Hosomi, A.; Ryu, I. Angew. Chem. Int. Ed. 2004, 43, 2423. DOI:10.1002/anie.200453702
[4] Review: (a) Ryu, I.; Sonoda, N. Angew. Chem. Int. Ed. 1996, 35, 1050. DOI: 10.1002/anie.199610501 (b) Ryu, I.; Sonoda, B.; Curran, D. P. Chem. Rev. 199696, 177. DOI: 10.1021/cr9400626 (c) Ryu, I. Chem. Soc. Rev. 2001, 30, 16. DOI: 10.1039/A904591K

 

関連書籍

[amazonjs asin=”0198502400″ locale=”JP” title=”Radical Reactions in Organic Synthesis (Oxford Chemistry Masters)”][amazonjs asin=”0444544712″ locale=”JP” title=”Advanced Free Radical Reactions for Organic Synthesis”][amazonjs asin=”4061533967″ locale=”JP” title=”有機フリーラジカルの化学 (KS化学専門書)”]

関連リンク

柳 日馨 研究室

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. プリリツェフ エポキシ化 Prilezhaev Epoxidat…
  2. メリフィールド ペプチド固相合成法 Merrifield Sol…
  3. アルキンジッパー反応 Alkyne Zipper Reacito…
  4. チチバビン反応 Chichibabin Reaction
  5. モッシャー法 Mosher Method
  6. カテラニ反応 Catellani Reaction
  7. デーリング・ラフラム アレン合成 Doering-LaFlamm…
  8. 脱水素型クロスカップリング Cross Dehydrogenat…

注目情報

ピックアップ記事

  1. 非古典的カルボカチオンを手懐ける
  2. 谷野 圭持 Keiji Tanino
  3. とある社長の提言について ~日本合成ゴムとJSR~
  4. 動画でわかる! 「575化学実験」実践ガイド
  5. iPadで使えるChemDrawが発売開始
  6. メリフィールド ペプチド固相合成法 Merrifield Solid-Phase Peptide Synthesis
  7. 第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授
  8. 衣笠反応 Kinugasa Reaction
  9. 2009年10月人気化学書籍ランキング
  10. 燃えないカーテン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP