[スポンサーリンク]

化学者のつぶやき

コロナウイルスが免疫システムから逃れる方法(1)

[スポンサーリンク]

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖や外出禁止令(カリフォルニア州)により、3月中旬からずっと実験ができず家に籠って論文執筆をしています。

今後の感染の拡大・社会への影響もとても気になりますが、理系の学生からすると、やっぱり分子レベルでのウイルスの生態も気になります。そこで今回は、コロナウイルス関連の興味深い論文を一つ紹介しようと思います。

“Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors.” Hackbart, M.; Deng, X.; Baker, S. C. PNAS 2020 (DOI: 10.1073/pnas.1921485117)

著者は、シカゴにあるロヨラ大学のSusan Baker教授らの研究チームです。Baker教授は、数十年にわたってコロナウイルスの研究をされています。今回の論文では、コロナウイルスの持つRNA分解酵素(EndoU)が、宿主細胞の免疫システムから逃れるために自分のRNAの端を切り取る、という興味深い機構について発表されました。

前半と後半に分けて、コロナウイルスの基礎知識も含めてご紹介します。

1. コロナウイルスとは

ウイルスは、核酸(DNA or RNA)とタンパク質でできた構造体です。動物などの細胞に自分の遺伝子を送り込み、細胞内の生体分子を勝手に使って増殖します。ウイルスと一口に言っても種類は様々で、核酸の種類(DNA or RNA、一重鎖 or 二重鎖、直鎖 or 環状、プラス鎖 or マイナス鎖、逆転写酵素の有無など)や構造によって、細かく分類がなされています。(プラス鎖 = 翻訳されるmRNAと同じ配列;マイナス鎖 = mRNAと相補的な配列) ヒトに感染するものもあれば、細菌などの微生物に感染するもの(バクテリオファージ)などもあります。

図1. コロナウイルスの構造。

 

コロナウイルスは、逆転写酵素を持たない一重鎖プラス鎖RNAウイルスの一種(図1)で、ヒトを含む哺乳類や鳥類に感染することが知られています。コロナウイルスのうち、ヒトに感染することが知られているのは新型のSARS-CoV-2(COVID-19を引き起こすウイルス)以外に6種類あり、そのうち4種類は一般的な風邪、2種類は重症肺炎(MERS・SARS)を引き起こします。

2. コロナウイルスの感染の流れ

コロナウイルスは、100 nm程度の大きさで、表面にスパイクと呼ばれるタンパク質でできた突起を持っています。感染の流れは以下の通りです(図2)。

  • スパイクタンパクが、宿主細胞の受容体に結合。
  • 細胞内へと侵入し、RNAを放出。
  • 放出したRNAをmRNAとして翻訳し、複製に関わる酵素を合成。
  • RNAの複製。ウイルスの殻(キャプシド)やスパイクなどの構造性タンパクを合成。
  • 新たなウイルスを複製。細胞の外に出て、他の細胞への感染と複製を繰り返す。

図2. コロナウイルスの感染の流れ。

 

3. コロナウイルスのゲノム構造

コロナウイルスの特徴の一つは、ゲノムRNAが他のウイルスと比べてかなり大きいことです。例えばよく知られているインフルエンザウイルスのゲノムRNAは9 kb程度、ヒト免疫不全ウイルス(HIV)は14 kb程度ですが、コロナウイルスのゲノムは30 kb程度もあります(図3)。コロナウイルスのゲノムのうち、構造性タンパク質(スパイク、エンベロープ、キャプシド)やその補助タンパク質をコードしているのはたった3分の1程度で、残り3分の2は、ウイルスの複製に関わるタンパク質がコードされています。ウイルス複製に関わるゲノム領域が大きいということは、それだけ複雑な複製機構を持っていると考えられます。

図3. コロナウイルスのゲノム配列。ウイルスの構造体を作るのに関わるのはたった3分の1で、残りはゲノムの複製に関わるタンパク質(複製酵素・転写酵素)がコードされている。(S: スパイクタンパク、E: エンベロープタンパク、M: 膜タンパク、N: キャプシドタンパク)

ロヨラ大学のSusan Baker教授らは、コロナウイルスのウイルス複製に関わる遺伝子の一つが、RNA分解酵素EndoUをコードしていることに着目しました。EndoUは、SARSCOVID-19のコロナウイルスも含め、知られている全ての種類のコロナウイルスが持っています。EndoUの一般的な機能は、RNAの塩基(A・U・G・C)のうち、U(ウラシル)の位置で加水分解することです(図4)。しかしながら、このEndoUがウイルスにとってどんな役割を果たしているかは未解明のままでした。

図4. EndoUの働き:RNAをU(ウラシル)にて切断。

次回に続く)

参考文献

  1. Masters, P. S. Adv. Virus Res. 2006, 66, 193. DOI: 10.1016/S0065-3527(06)66005-3
  2. Deng, X.; Baker, S. C. Virology 2018, 517, 157. DOI: 10.1016/j.virol.2017.12.024

関連リンク

関連書籍

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 被引用回数の多い科学論文top100
  2. 分子内架橋ポリマーを触媒ナノリアクターへ応用する
  3. 分子集合の力でマイクロスケールの器をつくる
  4. ジアニオンで芳香族化!?ラジアレンの大改革(開殻)
  5. ニッケル触媒による縮合三環式化合物の迅速不斉合成
  6. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観…
  7. 白金イオンを半導体ナノ結晶の内外に選択的に配置した触媒の合成
  8. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬
  2. 上村大輔教授追悼記念講演会
  3. 取り扱いやすく保存可能なオキシム試薬(O-ベンゼンスルホニルアセトヒドロキサム酸エチル)
  4. 仕事の進め方を見直してみませんか?-SEの実例から
  5. 最小のシクロデキストリンを組み上げる!
  6. 第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授
  7. 含ケイ素四員環 -その1-
  8. 人と人との「結合」を「活性化」する
  9. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】
  10. 自転車泥棒を臭いで撃退!?「スカンクロック」を考案

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年3月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP