[スポンサーリンク]

O

有機銅アート試薬 Organocuprate

[スポンサーリンク]

 

概要

一価銅と二等量の有機リチウム剤から調製される有機銅アート試薬(organocuprate)[R2CuLi]は求核性が高く、α,β-不飽和カルボニル化合物に対して1,4-付加反応、またはsp3炭素上での置換反応を速やかに進行させる。

塩基性が低く、脱プロトン化などの副反応を起こしにくい。有機リチウム剤単独では1,2-付加が優先するため、これと相補的に用いることができる。

反応性がきわめて高く、立体的に混みいった炭素原子にも反応させることができる。TMSClなどのハードルイス酸を加えることにより1,4-付加の反応は加速される。

有機金属剤としてはリチウム剤以外にもグリニャール試薬、有機亜鉛試薬も用いることができる。特に後二つの場合には、銅を触媒量に減ずることも可能である。

二当量の有機リチウム剤が反応には必須であるが、実際に付加するのは一当量分だけで、一当量分は無駄になる。転位しにくい配位子(ダミーリガンド)を導入したヘテロ有機銅アート試薬
(mixed organocuprate)[R(X)CuLi]
(X = alkenyl, -CN, -SR’,-NR’2,
PR’2 etc.)にすることで、貴重な反応剤を効率よく用いることができる。

近年では触媒量の銅-キラルホスフィン錯体を用いる、不斉1,4-付加反応の開発が進んでいる。

基本文献

 

反応機構

有機クプレートの構造は溶媒によって様々に異なるとされている。速度論実験などの結果から、二量体[R2CuLi]2が反応に関与するモデルが提唱されている。

近年、中村らによって、計算化学手法を用いる詳細な反応機構研究が報告されている(参考: Angew. Chem. Int. Ed. 200039, 3750. 有機合成化学協会誌, 200361, 144.)。

1,4-付加においては、dCu*C=C錯形成から電子豊富Cu(I)の酸化的付加を経て、Cu(III)中間体が生じる。近年、Cu(III)中間体の構造が分光分析および計算手法により推定された(参考:J. Am. Chem. Soc. 2007,129, 7208; J. Am. Chem. Soc. 2007, 129, 7210.)。 引き続き還元的脱離を経て金属エノラートを与えるが、この一連の過程が律速段階とされている。

organocuprate_michael_2.gif
「ダミーリガンドは銅と強く結合するため転移しない」という考えが通説であった。近年、リチウムとのカチオン-π相互作用によりダミーリガンドが転移不可能な方向に固定される、とする新説が中村らの計算によって提唱されている。
organocuprate_michael_3.gif

置換反応においても、銅(III)中間体を経由する機構が、実験・計算両面から支持されている。

organocuprate_sub_2.gif

反応例

環状不飽和ケトンの場合、置換基の立体の影響をうけ、立体選択的に反応が進む。d-π*錯形成が高い立体選択性のカギとなっている。
organocuprate_michael_4.giforganocuprate_michael_5.gif
1,4-付加後生じる金属エノラートは活性であり、さらに求電子剤を加えることでOne-Potで三成分連結型反応が行える。下図はこれをプロスタグランジン合成に応用した例である[1]
organocuprate_michael_6.gif
CuCNを銅ソースとして用いて調製した[R2Cu(CN)Li2]は、とくにhigher
order cuprate(Lipshutz cuprate)
と呼ばれ、通常のクプラートに比して高い反応性・異なる化学選択性を示す。
x-ane17.gif
アルケニルハライド・トリフラートとはsp2炭素上にもかかわらず置換(クロスカップリング)反応を起こす。
organocuprate_sub_5.gifTMSClやBF3などのルイス酸を共存させておくと、混み合った位置にも共役付加が行える。[2]  中間体のエノラートは位置選択的に生じる。

organocuprate_michael_8.gif

実験手順

organocuprate_sub_4.gif

エポキシド(3.50g, 40.6 mmol)のTHF溶液(30mL)に、CuCN(364mg, 3.65mmol)を加える。-78℃に冷却、撹拌しながら臭化ビニルマグネシウム(1M in THF, 52.8mL, 52.8 mmol)を45分かけて滴下する。反応混合物を0℃に昇温し、飽和塩化アンモニウム水溶液(20mL)を加える。有機相を分離し、水相をエーテルで3回抽出する。有機相をまとめて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥する。濾過後、減圧濃縮し、得られた粗生成物をカラムクロマトグラフィ(エーテル/ペンタン=1/3)で精製する。溶媒を除去すると目的物が淡黄色液体として得られる(4.41g, 収率95%)。[2]

 

実験のコツ・テクニック

有機銅アート試薬は熱的に不安定であり、昇温するとアルキル基のホモカップリングなどを経て、速やかに分解する。保存は不可能であり、用時調製する必要がある。

 

参考文献

[1] Suzuki, M.; Yanagisawa, A.; Noyori, R.J. Am. Chem. Soc. 1988, 110, 4718. DOI: 10.1021/ja00222a033

[2] (a) Yamamoto, Y. Angew. Chem. Int. Ed. 198625, 947. (b) Lipshutz, B. H.; Ellsworth, E. L.; Siahaan, T. J. Am. Chem. Soc. 1989, 111, 1351

[3]Holub, N.; Neidhorfer, J.; Blechert, S. Org. Lett. 20057, 1227.

 

関連反応

 

関連書籍

有機合成のための新触媒反応101

有機合成のための新触媒反応101

¥4,620(as of 01/28 14:36)
Amazon product information
Modern Organocopper Chemistry

Modern Organocopper Chemistry

¥29,000(as of 01/28 18:28)
Amazon product information
Conjugate Addition Reactions in Organic Synthesis (Tetrahedron Organic Chemistry Book 9) (English Ed...

Conjugate Addition Reactions in Organic Synthesis (Tetrahedron Organic Chemistry Book 9) (English Ed...

Perlmutter, P.
¥8,485(as of 01/28 18:28)
Release date: 2013/10/22
Amazon product information

 

外部リンク

関連記事

  1. ヒンスバーグ オキシインドール合成 Hinsberg Oxind…
  2. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ri…
  3. グリニャール反応 Grignard Reaction
  4. バートン脱アミノ化 Barton Deamination
  5. ジムロート転位 (共役 1,3-双極子開環体経由) Dimrot…
  6. モンサント酢酸合成プロセス Monsanto Process f…
  7. クノール ピロール合成 Knorr Pyrrole Synthe…
  8. ネバー転位 Neber Rearrangement

注目情報

ピックアップ記事

  1. 書籍「Topics in Current Chemistry」がジャーナルになるらしい
  2. 高い分離能のCOF膜が作製可能な二段階構築法の開発
  3. カリウム Potassium 細胞内に多量に含まれる元素
  4. ダイエット食から未承認薬
  5. 新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化
  6. 有機合成化学協会誌2022年12月号:有機アジド・sp3変換・ヤヌス型シロキサン・ANT阻害剤・超分子自動機械
  7. 窒素を直接 “消去” する分子骨格変換
  8. フッフッフッフッフッ(F5)、これからはCF3からSF5にスルフィド(S)
  9. ポンコツ博士の海外奮闘録⑥ 〜博士,アメ飯を食す。おうち系お肉編〜
  10. 【消臭リキ】マッチでトイレで消臭トライ 

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP