[スポンサーリンク]

O

有機銅アート試薬 Organocuprate

[スポンサーリンク]

 

概要

一価銅と二等量の有機リチウム剤から調製される有機銅アート試薬(organocuprate)[R2CuLi]は求核性が高く、α,β-不飽和カルボニル化合物に対して1,4-付加反応、またはsp3炭素上での置換反応を速やかに進行させる。

塩基性が低く、脱プロトン化などの副反応を起こしにくい。有機リチウム剤単独では1,2-付加が優先するため、これと相補的に用いることができる。

反応性がきわめて高く、立体的に混みいった炭素原子にも反応させることができる。TMSClなどのハードルイス酸を加えることにより1,4-付加の反応は加速される。

有機金属剤としてはリチウム剤以外にもグリニャール試薬、有機亜鉛試薬も用いることができる。特に後二つの場合には、銅を触媒量に減ずることも可能である。

二当量の有機リチウム剤が反応には必須であるが、実際に付加するのは一当量分だけで、一当量分は無駄になる。転位しにくい配位子(ダミーリガンド)を導入したヘテロ有機銅アート試薬
(mixed organocuprate)[R(X)CuLi]
(X = alkenyl, -CN, -SR’,-NR’2,
PR’2 etc.)にすることで、貴重な反応剤を効率よく用いることができる。

近年では触媒量の銅-キラルホスフィン錯体を用いる、不斉1,4-付加反応の開発が進んでいる。

基本文献

 

反応機構

有機クプレートの構造は溶媒によって様々に異なるとされている。速度論実験などの結果から、二量体[R2CuLi]2が反応に関与するモデルが提唱されている。

近年、中村らによって、計算化学手法を用いる詳細な反応機構研究が報告されている(参考: Angew. Chem. Int. Ed. 200039, 3750. 有機合成化学協会誌, 200361, 144.)。

1,4-付加においては、dCu*C=C錯形成から電子豊富Cu(I)の酸化的付加を経て、Cu(III)中間体が生じる。近年、Cu(III)中間体の構造が分光分析および計算手法により推定された(参考:J. Am. Chem. Soc. 2007,129, 7208; J. Am. Chem. Soc. 2007, 129, 7210.)。 引き続き還元的脱離を経て金属エノラートを与えるが、この一連の過程が律速段階とされている。

organocuprate_michael_2.gif
「ダミーリガンドは銅と強く結合するため転移しない」という考えが通説であった。近年、リチウムとのカチオン-π相互作用によりダミーリガンドが転移不可能な方向に固定される、とする新説が中村らの計算によって提唱されている。
organocuprate_michael_3.gif

置換反応においても、銅(III)中間体を経由する機構が、実験・計算両面から支持されている。

organocuprate_sub_2.gif

反応例

環状不飽和ケトンの場合、置換基の立体の影響をうけ、立体選択的に反応が進む。d-π*錯形成が高い立体選択性のカギとなっている。
organocuprate_michael_4.giforganocuprate_michael_5.gif
1,4-付加後生じる金属エノラートは活性であり、さらに求電子剤を加えることでOne-Potで三成分連結型反応が行える。下図はこれをプロスタグランジン合成に応用した例である[1]
organocuprate_michael_6.gif
CuCNを銅ソースとして用いて調製した[R2Cu(CN)Li2]は、とくにhigher
order cuprate(Lipshutz cuprate)
と呼ばれ、通常のクプラートに比して高い反応性・異なる化学選択性を示す。
x-ane17.gif
アルケニルハライド・トリフラートとはsp2炭素上にもかかわらず置換(クロスカップリング)反応を起こす。
organocuprate_sub_5.gifTMSClやBF3などのルイス酸を共存させておくと、混み合った位置にも共役付加が行える。[2]  中間体のエノラートは位置選択的に生じる。

organocuprate_michael_8.gif

実験手順

organocuprate_sub_4.gif

エポキシド(3.50g, 40.6 mmol)のTHF溶液(30mL)に、CuCN(364mg, 3.65mmol)を加える。-78℃に冷却、撹拌しながら臭化ビニルマグネシウム(1M in THF, 52.8mL, 52.8 mmol)を45分かけて滴下する。反応混合物を0℃に昇温し、飽和塩化アンモニウム水溶液(20mL)を加える。有機相を分離し、水相をエーテルで3回抽出する。有機相をまとめて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥する。濾過後、減圧濃縮し、得られた粗生成物をカラムクロマトグラフィ(エーテル/ペンタン=1/3)で精製する。溶媒を除去すると目的物が淡黄色液体として得られる(4.41g, 収率95%)。[2]

 

実験のコツ・テクニック

有機銅アート試薬は熱的に不安定であり、昇温するとアルキル基のホモカップリングなどを経て、速やかに分解する。保存は不可能であり、用時調製する必要がある。

 

参考文献

[1] Suzuki, M.; Yanagisawa, A.; Noyori, R.J. Am. Chem. Soc. 1988, 110, 4718. DOI: 10.1021/ja00222a033

[2] (a) Yamamoto, Y. Angew. Chem. Int. Ed. 198625, 947. (b) Lipshutz, B. H.; Ellsworth, E. L.; Siahaan, T. J. Am. Chem. Soc. 1989, 111, 1351

[3]Holub, N.; Neidhorfer, J.; Blechert, S. Org. Lett. 20057, 1227.

 

関連反応

 

関連書籍

[amazonjs asin=”3527297731″ locale=”JP” title=”Modern Organocopper Chemistry”][amazonjs asin=”0080370675″ locale=”JP” title=”Conjugate Addition Reactions in Organic Synthesis (Tetrahedron Organic Chemistry)”]

 

外部リンク

関連記事

  1. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveaul…
  2. クノール キノリン合成 Knorr Quinoline Synt…
  3. 衣笠反応 Kinugasa Reaction
  4. [2+2]光環化反応 [2+2] Photocyclizatio…
  5. クレーンケ ピリジン合成 Kröhnke Pyridine Sy…
  6. TEMPO酸化 TEMPO Oxidation
  7. 福山還元反応 Fukuyama Reduction
  8. 永田試薬 Nagata Reagent

注目情報

ピックアップ記事

  1. 単一細胞レベルで集団を解析
  2. マテリアルズ・インフォマティクスのためのデータサイエンティスト入門
  3. クノール キノリン合成 Knorr Quinoline Synthesis
  4. ⾦属触媒・バイオ触媒の⼒で⽣物活性分⼦群の⾻格を不⻫合成
  5. ニホニウムグッズをAmazonでゲットだぜ!
  6. コロナワクチン接種の体験談【化学者のつぶやき】
  7. TEtraQuinoline (TEQ)
  8. ChemDrawの使い方【作図編⑤ : 反応機構 (後編)】
  9. カチオン重合 Cationic Polymerization
  10. Wileyより2つのキャンペーン!ジャーナル無料進呈と書籍10%引き

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP