[スポンサーリンク]

M

メリフィールド ペプチド固相合成法 Merrifield Solid-Phase Peptide Synthesis

ペプチド固相合成法(Solid-Phase Peptide Synthiesis, SPPS)は、ペプチド及びタンパク質を化学合成する一般的手法のひとつ。

直径0.1mm程度のポリスチレン高分子ゲルのビーズなどを固相として用い、ここにアミノ酸を結合させ、続けて縮合反応→末端の脱保護によって1つずつアミノ酸鎖を伸長していく。目的とするペプチドの配列が出来上がったら固相表面から切り出し、目的の物質を得る。バクテリア中で合成させることの難しいリボソームペプチドの合成や、D-アミノ酸、重原子置換体などの非天然アミノ酸の導入、ペプチド及びタンパク質主鎖の修飾なども可能である。

固相合成法は液相合成法(liquid-phase peptide synthesis, LPPS)と比較し、原料と縮合剤を洗い流すだけでよく簡便である。SPPSの開発により、それまで数十が限界であったペプチド合成を倍以上に伸ばすことに成功した。現在では、自動合成装置なども発達している。SSPS概念は、ペプチド以外にも、医薬品開発のコンビナトリアルケミストリーなどへと発展を遂げている。

本法を開発したRobert Merrifieldは、1984年のノーベル化学賞を受賞した。

基本文献

  • Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. DOI:10.1021/ja00897a025
  • Fmoc method: (a) Chang, C.-D.; Meienhofer, J. Int. J. Pept. Protein Res. 1978, 11, 246. DOI: 10.1111/j.1399-3011.1978.tb02845.x (b) Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. ACS Comb. Sci. 2013, 15, 217. DOI: 10.1021/co300153c
  • Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247. doi:10.1038/nprot.2007.454

    <LPPS>
  • Kisfaludy, L.; Schon, I.; XSzirtes, T.; Nyeki, O.; Low, M. Tetrahedron Lett. 1974, 15, 1785. doi:1785.10.1016/S0040-4039(01)82579-X
  •  Anderson, L.; Blomberg, L.; Fiegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. J. Pept. Sci. 2000, 55, 227. [abstract]
  • Carpino, L. A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.; Mansour, E. M.; Siwruk, G. A.; Eynon, J. S.; Morgan, B. Org. Process Res. Dev. 2003, 7, 28. DOI: 10.1021/op0202179
  • Eggen, I. F. Org. Process Res. Dev. 2005, 9, 98. DOI: 10.1021/op049864l
<Review of SPPS>
  •  Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Mol. Biotechnol. 2006, 33, 239.
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
<Choice of Protective Group>
  • Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
<General Review of Chemical Synthesis of Peptides/Proteins>
  • Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. DOI: 10.1021/cr950005s
  •  Bray, B. L. Nat. Rev. Drug Discov. 2003, 2, 587. doi:10.1038/nrd1133
  •  Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91. DOI: 10.1146/annurev.biophys.34.040204.144700
  •  Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. DOI: 10.1039/b700141j
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
  •  Stolzew, S. C.; Kaiser, M. Synthesis 2012, 44, 1755. DOI: 10.1055/s-0031-1289765

反応機構

ペプチド鎖が高分子樹脂に固定されて隔てられていることから、それぞれのペプチド鎖が遠く、水素結合などで反応点がもぐりこむことによる反応性低下を防げる利点がある。

ペプチド結合形成反応そのものに関しては縮合剤の項目を参照。ペプチド合成はN-末端から伸長させていくのが定法である。C-末端から伸長させると、アズラクトン経由でα位のラセミ化が起こりやすく、好ましくない。

擬似的な高希釈条件が実現されているため、大環状ペプチドの合成にも効果的な方法論となる。

反応例

固相合成はN末アミノ酸の保護基によってFmoc法もしくはBoc法に分類される。これらカーバメート系保護基は穏和かつ選択的に除去可能であり、アミド型保護基に比してN-Hの酸性度が低く、エピメリ化が抑えられる利点もある。

中でもFmoc法が最良だと考えられている。側鎖を酸条件で除去可能なtBu、Tr、Boc基などで保護し、N末を塩基性条件で除去可能なFmocで保護したアミノ酸単位を繋げていく。側鎖の脱保護はトリフルオロ酢酸(TFA)、フッ化水素酸(HF)によって行われる。

固相担体には直径20~100μmのレジンビーズが用いられる。用途に応じて適したものを選ぶ必要がある。よく使われるものを以下に示す。C末アミド型ペプチドの合成を行うにはRinkレジンを用いる。

Merrifield_SPPS_2

 

実験手順

実験のコツ・テクニック

  • Fmocの脱保護は通常20%ピペリジン/DMFで行う。これでも完結しない場合は、DBU(1-5%)/ピペリジン(20%)/DMFで行うと良い。後者の条件ではAsp, Asn含有ペプチドには用いられない(イミドが副生するため)。
  • システインおよびヒスチジンの導入時にはラセミ化のリスクを伴う。システインの場合は硫黄原子のd軌道と脱プロトン化によって生じるカルバニオンが相互作用して安定化を受け、ラセミ化が促進されると考えられている[1]。この原理を踏まえ、嵩を小さくしてカップリング速度を増し、かつ電子供与性にしてd軌道の関与を抑えたMBom基[2]、Dpm基[3]が開発されている。ヒスチジンの場合は遊離π窒素が塩基として働くことが問題となる[4]。これを防ぐためにπ窒素をMBom基で保護する手法が開発されている[5]。

参考文献

  1. Barber, M.; Jones, J. H.;  Witty, M. J.  J. Chem. Soc., Perkin Trans. 1 1979, 2425. DOI: 10.1039/P19790002425
  2. Hibino, H.; Nishiuchi, Y. Org. Lett. 2012, 14, 1926. DOI: 10.1021/ol300592w
  3. Góngora-Benítez, M.; Mendive-Tapia, L.; Ramos-Tomillero, I.; Breman, A. C.; Tulla-Puche, J.; Albericio, F. Org. Lett. 2012, 14, 5472. DOI: 10.1021/ol302550p
  4. Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
  5. Hibino, H.; Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947. doi:10.1016/j.tetlet.2011.07.065

関連反応

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 山口マクロラクトン化 Yamaguchi Macrolacton…
  2. ウィッティヒ反応 Wittig Reaction
  3. 細見・櫻井アリル化反応 Hosomi-Sakurai Allyl…
  4. ペタシス反応 Petasis Reaction
  5. コープ転位 Cope Rearrangement
  6. パール・クノール ピロール合成 Paal-Knorr Pyrro…
  7. 四酸化ルテニウム Ruthenium Tetroxide (Ru…
  8. コーンブルム ニトロ化反応 Kornblum Nitoratio…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 熊田誠氏死去(京大名誉教授)=有機ケイ素化学の権威
  2. 日本プロセス化学会2005サマーシンポジウム
  3. セブンシスターズについて① ~世を統べる資源会社~
  4. 2-トリメチルシリル-1,3-ジチアン:1,3-Dithian-2-yltrimethylsilane
  5. イミダゾリニウムトリフラート塩の合成に有用なビニルスルホニウム塩前駆体
  6. サノフィ・アベンティスグループ、「タキソテール」による進行乳癌の生存期間改善効果を発表
  7. 化学研究ライフハック:ソーシャルブックマークを活用しよう!
  8. そこまでやるか?ー不正論文驚愕の手口
  9. 2007年度ノーベル医学・生理学賞決定!
  10. チャン・ラム・エヴァンス カップリング Chan-Lam-Evans Coupling

関連商品

注目情報

注目情報

最新記事

独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成

近年単離されたアルカロイド(—)-himalensine Aの全合成に初めて成功した。独自開発した二…

究極の脱水溶媒 Super2(スーパー スクエア):関東化学

この度、関東化学株式会社は水分1ppm以下を保証する脱水溶媒を発売開始致します。この水分保証…

徒然なるままにセンター試験を解いてみた(2018年版)

今年もセンター試験が終わりました。大雪の問題など気象的に厳しかったかも知れませんが、受験生の皆さ…

「関東化学」ってどんな会社?

1944年(昭和19年)の設立以来、研究分野で使われる多種多様の薬品を市場に供給することで社会に貢献…

光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合成

2017年、カリフォルニア大学アーヴァイン校・Larry E. Overmanらは、可視光レドックス…

池袋PARCOで「におい展」開催

「カメムシ」「腐豆腐」「シュールストレミング」――普段は嗅ぐ機会はないが、嗅いでみたい臭いを体験でき…

Chem-Station Twitter

PAGE TOP