[スポンサーリンク]

M

メリフィールド ペプチド固相合成法 Merrifield Solid-Phase Peptide Synthesis

[スポンサーリンク]

ペプチド固相合成法(Solid-Phase Peptide Synthiesis, SPPS)は、ペプチド及びタンパク質を化学合成する一般的手法のひとつ。

直径0.1mm程度のポリスチレン高分子ゲルのビーズなどを固相として用い、ここにアミノ酸を結合させ、続けて縮合反応→末端の脱保護によって1つずつアミノ酸鎖を伸長していく。目的とするペプチドの配列が出来上がったら固相表面から切り出し、目的の物質を得る。バクテリア中で合成させることの難しいリボソームペプチドの合成や、D-アミノ酸、重原子置換体などの非天然アミノ酸の導入、ペプチド及びタンパク質主鎖の修飾なども可能である。

固相合成法は液相合成法(liquid-phase peptide synthesis, LPPS)と比較し、原料と縮合剤を洗い流すだけでよく簡便である。SPPSの開発により、それまで数十が限界であったペプチド合成を倍以上に伸ばすことに成功した。現在では、自動合成装置なども発達している。SSPS概念は、ペプチド以外にも、医薬品開発のコンビナトリアルケミストリーなどへと発展を遂げている。

本法を開発したRobert Merrifieldは、1984年のノーベル化学賞を受賞した。

基本文献

  • Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. DOI:10.1021/ja00897a025
  • Fmoc method: (a) Chang, C.-D.; Meienhofer, J. Int. J. Pept. Protein Res. 1978, 11, 246. DOI: 10.1111/j.1399-3011.1978.tb02845.x (b) Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. ACS Comb. Sci. 2013, 15, 217. DOI: 10.1021/co300153c
  • Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247. doi:10.1038/nprot.2007.454

    <LPPS>
  • Kisfaludy, L.; Schon, I.; XSzirtes, T.; Nyeki, O.; Low, M. Tetrahedron Lett. 1974, 15, 1785. doi:1785.10.1016/S0040-4039(01)82579-X
  •  Anderson, L.; Blomberg, L.; Fiegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. J. Pept. Sci. 2000, 55, 227. [abstract]
  • Carpino, L. A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.; Mansour, E. M.; Siwruk, G. A.; Eynon, J. S.; Morgan, B. Org. Process Res. Dev. 2003, 7, 28. DOI: 10.1021/op0202179
  • Eggen, I. F. Org. Process Res. Dev. 2005, 9, 98. DOI: 10.1021/op049864l
<Review of SPPS>
  •  Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Mol. Biotechnol. 2006, 33, 239.
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
<Choice of Protective Group>
  • Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
<General Review of Chemical Synthesis of Peptides/Proteins>
  • Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. DOI: 10.1021/cr950005s
  •  Bray, B. L. Nat. Rev. Drug Discov. 2003, 2, 587. doi:10.1038/nrd1133
  •  Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91. DOI: 10.1146/annurev.biophys.34.040204.144700
  •  Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. DOI: 10.1039/b700141j
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
  •  Stolzew, S. C.; Kaiser, M. Synthesis 2012, 44, 1755. DOI: 10.1055/s-0031-1289765

反応機構

ペプチド鎖が高分子樹脂に固定されて隔てられていることから、それぞれのペプチド鎖が遠く、水素結合などで反応点がもぐりこむことによる反応性低下を防げる利点がある。

ペプチド結合形成反応そのものに関しては縮合剤の項目を参照。ペプチド合成はN-末端から伸長させていくのが定法である。C-末端から伸長させると、アズラクトン経由でα位のラセミ化が起こりやすく、好ましくない。

擬似的な高希釈条件が実現されているため、大環状ペプチドの合成にも効果的な方法論となる。

反応例

固相合成はN末アミノ酸の保護基によってFmoc法もしくはBoc法に分類される。これらカーバメート系保護基は穏和かつ選択的に除去可能であり、アミド型保護基に比してN-Hの酸性度が低く、エピメリ化が抑えられる利点もある。

中でもFmoc法が最良だと考えられている。側鎖を酸条件で除去可能なtBu、Tr、Boc基などで保護し、N末を塩基性条件で除去可能なFmocで保護したアミノ酸単位を繋げていく。側鎖の脱保護はトリフルオロ酢酸(TFA)、フッ化水素酸(HF)によって行われる。

固相担体には直径20~100μmのレジンビーズが用いられる。用途に応じて適したものを選ぶ必要がある。よく使われるものを以下に示す。C末アミド型ペプチドの合成を行うにはRinkレジンを用いる。

Merrifield_SPPS_2

 

実験手順

実験のコツ・テクニック

  • Fmocの脱保護は通常20%ピペリジン/DMFで行う。これでも完結しない場合は、DBU(1-5%)/ピペリジン(20%)/DMFで行うと良い。後者の条件ではAsp, Asn含有ペプチドには用いられない(アルパルトイミド化が進行するため)。
  • 固相合成の溶媒はDMFかNMRが良く用いられるが、両溶媒は経時的に分解してアミン不純物を産生し、ペプチド合成汚染の原因になる可能性がある。AldraAmineパケットを溶媒に入れておくとをこれを簡便に除去でき、アミンフリー溶媒として用いることができる。
  • システインおよびヒスチジンの導入時にはラセミ化のリスクを伴う。システインの場合は硫黄原子のd軌道と脱プロトン化によって生じるカルバニオンが相互作用して安定化を受け、ラセミ化が促進されると考えられている[1]。この原理を踏まえ、嵩を小さくしてカップリング速度を増し、かつ電子供与性にしてd軌道の関与を抑えたMBom基[2]、Dpm基[3]が開発されている。ヒスチジンの場合は遊離π窒素が塩基として働くことが問題となる[4]。これを防ぐためにπ窒素をMBom基で保護する手法が開発されている[5]。

参考文献

  1. Barber, M.; Jones, J. H.;  Witty, M. J.  J. Chem. Soc., Perkin Trans. 1 1979, 2425. DOI: 10.1039/P19790002425
  2. Hibino, H.; Nishiuchi, Y. Org. Lett. 2012, 14, 1926. DOI: 10.1021/ol300592w
  3. Góngora-Benítez, M.; Mendive-Tapia, L.; Ramos-Tomillero, I.; Breman, A. C.; Tulla-Puche, J.; Albericio, F. Org. Lett. 2012, 14, 5472. DOI: 10.1021/ol302550p
  4. Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
  5. Hibino, H.; Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947. doi:10.1016/j.tetlet.2011.07.065

関連反応

関連書籍

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ダルツェンス縮合反応 Darzens Condensation
  2. カーン グリコシド化反応 Kahne Glycosidation…
  3. アフマトヴィッチ反応 Achmatowicz Reaction
  4. 有機トリフルオロボレート塩 Organotrifluorobor…
  5. チオール-エン反応 Thiol-ene Reaction
  6. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Gan…
  7. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-…
  8. ニコラス反応 Nicholas Reaction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. varietyの使い方
  2. シュレンクフラスコ(Schlenk flask)
  3. 95%以上が水の素材:アクアマテリアル
  4. 室温でアルカンから水素を放出させる紫外光ハイブリッド触媒系
  5. 実例で分かるスケールアップの原理と晶析【終了】
  6. “クモの糸”が「ザ・ノース・フェイス」のジャケットになった
  7. ケミカルタイムズ 紹介記事シリーズ
  8. 腎細胞がん治療の新薬ベルツチファン製造プロセスの開発
  9. 米デュポン株、来年急上昇する可能性
  10. のむ発毛薬の輸入承認 国内初、年内にも発売へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成功!:クロロホルムを”C1原料”として化学品を連続合成

第450回のスポットライトリサーチは、神戸大学大学院理学研究科化学専攻 津田研究室の岡田 稜海 (お…

【太陽ホールディングス】新卒採用情報(2024卒)

私たちは「楽しい社会を実現する」という経営理念をもとに事業分野を広げ、世界をリードする総合化学企業と…

進む分析機器の開発

がん研究会がんプレシジョン医療研究センターの芳賀淑美主任研究員、植田幸嗣プロジェクトリーダーらの研究…

無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功

第449回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(椴山グループ)5年…

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP