[スポンサーリンク]

M

メリフィールド ペプチド固相合成法 Merrifield Solid-Phase Peptide Synthesis

[スポンサーリンク]

ペプチド固相合成法(Solid-Phase Peptide Synthiesis, SPPS)は、ペプチド及びタンパク質を化学合成する一般的手法のひとつ。

直径0.1mm程度のポリスチレン高分子ゲルのビーズなどを固相として用い、ここにアミノ酸を結合させ、続けて縮合反応→末端の脱保護によって1つずつアミノ酸鎖を伸長していく。目的とするペプチドの配列が出来上がったら固相表面から切り出し、目的の物質を得る。バクテリア中で合成させることの難しいリボソームペプチドの合成や、D-アミノ酸、重原子置換体などの非天然アミノ酸の導入、ペプチド及びタンパク質主鎖の修飾なども可能である。

固相合成法は液相合成法(liquid-phase peptide synthesis, LPPS)と比較し、原料と縮合剤を洗い流すだけでよく簡便である。SPPSの開発により、それまで数十が限界であったペプチド合成を倍以上に伸ばすことに成功した。現在では、自動合成装置なども発達している。SSPS概念は、ペプチド以外にも、医薬品開発のコンビナトリアルケミストリーなどへと発展を遂げている。

本法を開発したRobert Merrifieldは、1984年のノーベル化学賞を受賞した。

基本文献

  • Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149. DOI:10.1021/ja00897a025
  • Fmoc method: (a) Chang, C.-D.; Meienhofer, J. Int. J. Pept. Protein Res. 1978, 11, 246. DOI: 10.1111/j.1399-3011.1978.tb02845.x (b) Gongora-Benitez, M.; Tulla-Puche, J.; Albericio, F. ACS Comb. Sci. 2013, 15, 217. DOI: 10.1021/co300153c
  • Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247. doi:10.1038/nprot.2007.454

    <LPPS>
  • Kisfaludy, L.; Schon, I.; XSzirtes, T.; Nyeki, O.; Low, M. Tetrahedron Lett. 1974, 15, 1785. doi:1785.10.1016/S0040-4039(01)82579-X
  •  Anderson, L.; Blomberg, L.; Fiegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. J. Pept. Sci. 2000, 55, 227. [abstract]
  • Carpino, L. A.; Ghassemi, S.; Ionescu, D.; Ismail, M.; Sadat-Aalaee, D.; Truran, G.; Mansour, E. M.; Siwruk, G. A.; Eynon, J. S.; Morgan, B. Org. Process Res. Dev. 2003, 7, 28. DOI: 10.1021/op0202179
  • Eggen, I. F. Org. Process Res. Dev. 2005, 9, 98. DOI: 10.1021/op049864l
<Review of SPPS>
  •  Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Mol. Biotechnol. 2006, 33, 239.
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
<Choice of Protective Group>
  • Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
<General Review of Chemical Synthesis of Peptides/Proteins>
  • Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243. DOI: 10.1021/cr950005s
  •  Bray, B. L. Nat. Rev. Drug Discov. 2003, 2, 587. doi:10.1038/nrd1133
  •  Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 91. DOI: 10.1146/annurev.biophys.34.040204.144700
  •  Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. DOI: 10.1039/b700141j
  •  Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi:10.1038/nature10702
  •  Stolzew, S. C.; Kaiser, M. Synthesis 2012, 44, 1755. DOI: 10.1055/s-0031-1289765

反応機構

ペプチド鎖が高分子樹脂に固定されて隔てられていることから、それぞれのペプチド鎖が遠く、水素結合などで反応点がもぐりこむことによる反応性低下を防げる利点がある。

ペプチド結合形成反応そのものに関しては縮合剤の項目を参照。ペプチド合成はN-末端から伸長させていくのが定法である。C-末端から伸長させると、アズラクトン経由でα位のラセミ化が起こりやすく、好ましくない。

擬似的な高希釈条件が実現されているため、大環状ペプチドの合成にも効果的な方法論となる。

反応例

固相合成はN末アミノ酸の保護基によってFmoc法もしくはBoc法に分類される。これらカーバメート系保護基は穏和かつ選択的に除去可能であり、アミド型保護基に比してN-Hの酸性度が低く、エピメリ化が抑えられる利点もある。

中でもFmoc法が最良だと考えられている。側鎖を酸条件で除去可能なtBu、Tr、Boc基などで保護し、N末を塩基性条件で除去可能なFmocで保護したアミノ酸単位を繋げていく。側鎖の脱保護はトリフルオロ酢酸(TFA)、フッ化水素酸(HF)によって行われる。

固相担体には直径20~100μmのレジンビーズが用いられる。用途に応じて適したものを選ぶ必要がある。よく使われるものを以下に示す。C末アミド型ペプチドの合成を行うにはRinkレジンを用いる。

Merrifield_SPPS_2

 

実験手順

実験のコツ・テクニック

  • Fmocの脱保護は通常20%ピペリジン/DMFで行う。これでも完結しない場合は、DBU(1-5%)/ピペリジン(20%)/DMFで行うと良い。後者の条件ではAsp, Asn含有ペプチドには用いられない(アルパルトイミド化が進行するため)。
  • 固相合成の溶媒はDMFかNMRが良く用いられるが、両溶媒は経時的に分解してアミン不純物を産生し、ペプチド合成汚染の原因になる可能性がある。AldraAmineパケットを溶媒に入れておくとをこれを簡便に除去でき、アミンフリー溶媒として用いることができる。
  • システインおよびヒスチジンの導入時にはラセミ化のリスクを伴う。システインの場合は硫黄原子のd軌道と脱プロトン化によって生じるカルバニオンが相互作用して安定化を受け、ラセミ化が促進されると考えられている[1]。この原理を踏まえ、嵩を小さくしてカップリング速度を増し、かつ電子供与性にしてd軌道の関与を抑えたMBom基[2]、Dpm基[3]が開発されている。ヒスチジンの場合は遊離π窒素が塩基として働くことが問題となる[4]。これを防ぐためにπ窒素をMBom基で保護する手法が開発されている[5]。

参考文献

  1. Barber, M.; Jones, J. H.;  Witty, M. J.  J. Chem. Soc., Perkin Trans. 1 1979, 2425. DOI: 10.1039/P19790002425
  2. Hibino, H.; Nishiuchi, Y. Org. Lett. 2012, 14, 1926. DOI: 10.1021/ol300592w
  3. Góngora-Benítez, M.; Mendive-Tapia, L.; Ramos-Tomillero, I.; Breman, A. C.; Tulla-Puche, J.; Albericio, F. Org. Lett. 2012, 14, 5472. DOI: 10.1021/ol302550p
  4. Isidro-Llobet, A.; Álvarez, M.; Albericio, F.  Chem. Rev. 2009, 109, 2455. DOI: 10.1021/cr800323s
  5. Hibino, H.; Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947. doi:10.1016/j.tetlet.2011.07.065

関連反応

関連書籍

外部リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. フェリエ転位 Ferrier Rearrangement
  2. アッペル反応 Appel Reaction
  3. カルボニル基の保護 Protection of Carbonyl…
  4. オルトメタル化 Directed Ortho Metalatio…
  5. フィンケルシュタイン反応 Finkelstein Reactio…
  6. 辻・ウィルキンソン 脱カルボニル化反応 Tsuji-Wilkin…
  7. 四酸化オスミウム Osmium Tetroxide (OsO4)…
  8. ルボトム酸化 Rubottom Oxidation

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ブルック転位 Brook Rearrangement
  2. iPadで使えるChemDrawが発売開始
  3. 有機ルイス酸触媒で不斉向山–マイケル反応
  4. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発
  5. Essential細胞生物学
  6. 後発医薬品、相次ぎ発売・特許切れ好機に
  7. DNAのもとは隕石とともに
  8. 世界が終わる日までビスマス
  9. 最も引用された論文
  10. エーザイ、抗てんかん剤「イノベロン」、ドイツなどで発売を開始

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

注目情報

最新記事

材料開発の変革をリードするスタートアップのデータサイエンティストとは?

開催日:2023/06/08  申し込みはこちら■開催概要MI-6はこの度シリーズAラウ…

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

開催日:2023/05/31 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功

第521回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?

開催日:2023/06/01 申し込みはこちら■開催概要MI-6はこの度シリーズAラウン…

種子島沖海底泥火山における表層堆積物中の希ガスを用いた流体の起源深度の推定

第520回のスポットライトリサーチは、琉球大学大学院 理工学研究科海洋自然科学専攻 地殻内部水圏地化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP