[スポンサーリンク]

一般的な話題

2009年ノーベル化学賞『リボソームの構造と機能の解明』

 

スウェーデン王立科学アカデミーは7日、09年のノーベル化学賞を、英MRC分子生物学研究所のベンカトラマン・ラマクリシュナン博士(57)と米
エール大のトーマス・スタイツ教授(59)、イスラエルのワイツマン科学研究所のエイダ・ヨナス博士(70)の3氏に授与すると発表した。

授賞理由は細胞内でたんぱく質を合成する小器官リボソームの構造と機能の解明。細菌のリボソームに抗生物質が結合して、細菌の働きが阻害される様子をエックス線構造解析で明らかにした。これにより、新たな抗生物質をつくることが可能になった。(引用・毎日jp)

 

2009年のノーベル化学賞が発表になりました。今年は三名が受賞です。

今年こそは有機化学だろう!と思えたのですが、残念ながら予想的中ならず・・・。

またもや生化学領域からです。今年の医学生理学賞もテロメア・テロメラーゼ=生化学だったのですが。今の判定基準だと対象者が多すぎて医学生理学賞だけではカバーしきれなくなっており、化学賞にまで進出してるような印象を受けますね。

有機化学を専門とする身から見ればちょっと残念な事態ではあります。「ノーベル生物学賞」とか作っても良いぐらいなんじゃないでしょうか。まぁそれだけ化学が多方面に触手を伸ばしているという証なのかも知れませんが・・・。

今年の受賞対象は、「リボソームの機能と構造解析」についてです。

 

リボソームとはタンパク質を合成する細胞内器官の一つです。

具体的には、遺伝物質DNAのコピーであるメッセンジャーRNA(mRNA)からの情報を読み、それをもとにアミノ酸を順序よく結合させ、必要なタンパク質を合成する、という一連の作業を担う器官です(下記アニメーション参照)。

いわば私たちの身体を作り上げている場所、「タンパク質合成工場」がすなわちリボソームだと言うことです。

 

最も重要な細胞内器官の一つなのですが、その3次元構造を原子レベルで明らかにすることは、多くの科学者からほぼ不可能と考えられていました。

それも理由を考えれば納得で、リボソームは50以上ものタンパク質と、数千ものRNA・ヌクレオシドの複合体から成るという、常識外れに巨大な超複雑構造をもつのです。こういったものを構造解析すること自体、並大抵の難度ではないというのは全く理解できます。

 

英MRC研究所のベンカトラマン・ラマクリシュナン(写真左)、米イェール大学のトーマス・ステイツ(写真中央)、ワイズマン研究所のエイダ・ヨナス(写真右)はリボソームのX線結晶構造解析を行い、それぞれ独立に、かつほぼ同時期に3次元立体構造を発表しました。(Nature. 2000,407, 327, Science 2000, 289, 905, Cell 2000, 102, 615.) 今回の受賞は、この時の業績が評価されてのことだと思われます。

3Dribosome.gif(画像:www.pbs.org)

 

またごく最近、リボソームとmRNA/tRNA複合体の3次元構造も明らかとされました。

この一連の研究によってリボソームがどのようにmRNAを読み、どのようにタンパク質を合成していくか、と言うことに対する原子レベルでの機能理解が大きく進みました。

3Dribosome_2.gif
(画像:www.biologyreference.com)

リボソームは生命活動に必要不可欠な器官ですので、様々な種類の医薬品開発のターゲットともなりえます。

例えば実用されている抗生物質・ストレプトマイシンテトラサイクリンなどは、菌のリボソームをターゲットとしています。これは菌に存在するリボソームだけを選択的に阻害し、人間に存在するリボソームにはそれほど影響を与えません。このため副作用の少ない(選択毒性の高い)抗生物質として働くわけです。

streptomycin.gif tetracycline.gif

こういった既知医薬品のメカニズムを調べ、新たな医薬品開発につなげていく為には、ターゲットの構造を知ることがまず何より重要となります。3次元構造が分かれば、それを元にしたドッキングスタディなどをコンピュータ上で行えるため、どんな形状の化合物が医薬候補たり得るのか当てを付けたり、短時間で網羅的に可能性を調べることもできるようになるのです。

このように、リボソームのような医薬ターゲットたりうる重要生体高分子の立体構造が明らかにされることは、医薬品開発効率化という観点からも、大変重要な意義を持ちます。

あらゆる方面にインパクトを与える基礎研究ですし、ノーベル賞をもらって然るべき業績であるのは疑いありません。むしろまだもらってなかったのか、とすら思えてやや意外な感じです。兎にも角にもリボソームの構造解析自体が大変な難易度故に、それが意外と最近の出来事だった、というのが大きな理由なのでしょうね。

ともあれ今年は生化学ばかりだったので、筆者としては、来年こそ有機化学と日本勢の受賞に期待したいところですね。クロスカップリングやカーボンナノチューブは、実際いつとってもおかしくない分野でもありますし、順番的にはそろそろなはずにも思えるので。

 

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 口頭発表での緊張しない6つのヒント
  2. 次なる新興感染症に備える
  3. ついに成功した人工光合成
  4. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  5. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  6. リンダウ会議に行ってきた④
  7. アントンパール 「Monowave300」: マイクロ波有機合成…
  8. イボレノリドAの単離から全合成まで

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. (+)-フォーセチミンの全合成
  2. 化学で「透明人間」になれますか? 人類の夢をかなえる最新研究15
  3. 生合成を模倣した有機合成
  4. 異分野交流のススメ:ヨーロッパ若手研究者交流会参加体験より
  5. 危険ドラッグ:創薬化学の視点から
  6. 製薬各社 2010年度決算
  7. のむ発毛薬の輸入承認 国内初、年内にも発売へ
  8. 高専シンポジウム in KOBE に参加しました –その 1: ヒノキの精油で和歌山みかんを活性化–
  9. Whitesides教授が語る「成果を伝えるための研究論文執筆法」
  10. 宮沢賢治の元素図鑑

関連商品

注目情報

注目情報

最新記事

Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!

本年、Nature 創刊150周年を迎えるそうです。150年といえば、明治時代が始まったばかり、北海…

アルケニルアミドに2つアリールを入れる

ニッケル触媒を用いたアルケニルアミドの1,2-ジアリール化反応が開発された。フマル酸エステルを配位子…

蛍光標識で定性的・定量的な解析を可能に:Dansyl-GSH

反応性代謝物の存在を調べたい。代謝化学の実験をしていれば、ほとんどの人がそう思うのではないでしょうか…

アメリカで医者にかかる

アメリカの大学院に進学する際、とても悩んだのが、医療保険についてです。アメリカでは医療費がとても高い…

MOF 結晶表面の敏感な応答をリアルタイム観察

第178回のスポットライトリサーチは、東京大学の細野暢彦講師にお願いしました。細野先生は高分…

有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素

有機合成化学協会が発行する有機合成化学協会誌、2019年2月号がオンライン公開されました。今…

Chem-Station Twitter

PAGE TOP