[スポンサーリンク]

一般的な話題

2009年ノーベル化学賞『リボソームの構造と機能の解明』

[スポンサーリンク]

 

スウェーデン王立科学アカデミーは7日、09年のノーベル化学賞を、英MRC分子生物学研究所のベンカトラマン・ラマクリシュナン博士(57)と米
エール大のトーマス・スタイツ教授(59)、イスラエルのワイツマン科学研究所のエイダ・ヨナス博士(70)の3氏に授与すると発表した。

授賞理由は細胞内でたんぱく質を合成する小器官リボソームの構造と機能の解明。細菌のリボソームに抗生物質が結合して、細菌の働きが阻害される様子をエックス線構造解析で明らかにした。これにより、新たな抗生物質をつくることが可能になった。(引用・毎日jp)

 

2009年のノーベル化学賞が発表になりました。今年は三名が受賞です。

今年こそは有機化学だろう!と思えたのですが、残念ながら予想的中ならず・・・。

またもや生化学領域からです。今年の医学生理学賞もテロメア・テロメラーゼ=生化学だったのですが。今の判定基準だと対象者が多すぎて医学生理学賞だけではカバーしきれなくなっており、化学賞にまで進出してるような印象を受けますね。

有機化学を専門とする身から見ればちょっと残念な事態ではあります。「ノーベル生物学賞」とか作っても良いぐらいなんじゃないでしょうか。まぁそれだけ化学が多方面に触手を伸ばしているという証なのかも知れませんが・・・。

今年の受賞対象は、「リボソームの機能と構造解析」についてです。

 

リボソームとはタンパク質を合成する細胞内器官の一つです。

具体的には、遺伝物質DNAのコピーであるメッセンジャーRNA(mRNA)からの情報を読み、それをもとにアミノ酸を順序よく結合させ、必要なタンパク質を合成する、という一連の作業を担う器官です(下記アニメーション参照)。

いわば私たちの身体を作り上げている場所、「タンパク質合成工場」がすなわちリボソームだと言うことです。

 

最も重要な細胞内器官の一つなのですが、その3次元構造を原子レベルで明らかにすることは、多くの科学者からほぼ不可能と考えられていました。

それも理由を考えれば納得で、リボソームは50以上ものタンパク質と、数千ものRNA・ヌクレオシドの複合体から成るという、常識外れに巨大な超複雑構造をもつのです。こういったものを構造解析すること自体、並大抵の難度ではないというのは全く理解できます。

 

英MRC研究所のベンカトラマン・ラマクリシュナン(写真左)、米イェール大学のトーマス・ステイツ(写真中央)、ワイズマン研究所のエイダ・ヨナス(写真右)はリボソームのX線結晶構造解析を行い、それぞれ独立に、かつほぼ同時期に3次元立体構造を発表しました。(Nature. 2000,407, 327, Science 2000, 289, 905, Cell 2000, 102, 615.) 今回の受賞は、この時の業績が評価されてのことだと思われます。

3Dribosome.gif(画像:www.pbs.org)

 

またごく最近、リボソームとmRNA/tRNA複合体の3次元構造も明らかとされました。

この一連の研究によってリボソームがどのようにmRNAを読み、どのようにタンパク質を合成していくか、と言うことに対する原子レベルでの機能理解が大きく進みました。

3Dribosome_2.gif
(画像:www.biologyreference.com)

リボソームは生命活動に必要不可欠な器官ですので、様々な種類の医薬品開発のターゲットともなりえます。

例えば実用されている抗生物質・ストレプトマイシンテトラサイクリンなどは、菌のリボソームをターゲットとしています。これは菌に存在するリボソームだけを選択的に阻害し、人間に存在するリボソームにはそれほど影響を与えません。このため副作用の少ない(選択毒性の高い)抗生物質として働くわけです。

streptomycin.gif tetracycline.gif

こういった既知医薬品のメカニズムを調べ、新たな医薬品開発につなげていく為には、ターゲットの構造を知ることがまず何より重要となります。3次元構造が分かれば、それを元にしたドッキングスタディなどをコンピュータ上で行えるため、どんな形状の化合物が医薬候補たり得るのか当てを付けたり、短時間で網羅的に可能性を調べることもできるようになるのです。

このように、リボソームのような医薬ターゲットたりうる重要生体高分子の立体構造が明らかにされることは、医薬品開発効率化という観点からも、大変重要な意義を持ちます。

あらゆる方面にインパクトを与える基礎研究ですし、ノーベル賞をもらって然るべき業績であるのは疑いありません。むしろまだもらってなかったのか、とすら思えてやや意外な感じです。兎にも角にもリボソームの構造解析自体が大変な難易度故に、それが意外と最近の出来事だった、というのが大きな理由なのでしょうね。

ともあれ今年は生化学ばかりだったので、筆者としては、来年こそ有機化学と日本勢の受賞に期待したいところですね。クロスカップリングやカーボンナノチューブは、実際いつとってもおかしくない分野でもありますし、順番的にはそろそろなはずにも思えるので。

 

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. MEDCHEM NEWS 32-2号 「儲からないが必要な薬の話…
  2. 電子や分子に応答する“サンドイッチ”分子からなるナノカプセルを開…
  3. システインの位置選択的修飾を実現する「π-クランプ法」
  4. 植物の受精効率を高める糖鎖「アモール」の発見
  5. 人工DNAを複製可能な生物ができた!
  6. アルケンの実用的ペルフルオロアルキル化反応の開発
  7. 新人化学者の失敗ランキング
  8. 不斉をあざ(Aza)やかに(Ni)制御!Aza-Heck環化/還…

注目情報

ピックアップ記事

  1. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  2. 2008年ノーベル化学賞『緑色蛍光タンパクの発見と応用』
  3. ベンゼンの直接アルキル化
  4. ハーバード大Whitesides教授プリーストリーメダルを受賞
  5. ベンゼン環が速く・キレイに描けるルーズリーフ
  6. グァンビン・ドン Guangbin Dong
  7. 【速報】2022年ノーベル化学賞は「クリックケミストリーと生体直交化学」へ!
  8. 合成とノーベル化学賞
  9. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  10. 越野 広雪 Hiroyuki Koshino

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP