[スポンサーリンク]

化学者のつぶやき

メソリティック開裂を経由するカルボカチオンの触媒的生成法

[スポンサーリンク]

2016年、プリンストン大学・Robert R. Knowlesらは、可視光レドックス触媒による1電子酸化を経てアルコキシアミンからカチオンラジカルを生成し、その後メソリティック開裂を進行させ、カルボカチオンを発生させる新手法を開発した。中性条件かつ温和な条件で進行し、酸に弱い基質や酸化されやすい求核剤も使用できる。

“Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations”
Zhu, Q.; Gentry, E. C.; Knowles, R. R.* Angew. Chem. Int. Ed. 2016, 55, 9969. DOI: 10.1002/anie.201604619 (アイキャッチ図は本論文より引用)

問題設定

 カルボカチオンは有機合成において古典的な中間体であるが、複雑化合物や不斉触媒への応用は限定的であり、新しい生成法が望まれている。カルボカチオンの発生法は様々あるが、それぞれ求核剤の制限がある。近年はイオンペアを活用した不斉触媒反応の研究も盛んとなってきているが、不安定なカルボカチオンは制御できないでいる。そこで中性条件でカルボカチオンを発生させる新規触媒反応は合成上、十分な利点と多様な求核剤の使用ができる可能性がある。

 著者らは、メソリティック開裂が問題解決の手法になると考えた。不対電子を近傍に持つ共有結合は、不安定化されることが知られている。このためしばしば自発的に開裂し、中性フリーラジカルとカルボカチオンが生成する。しかしながらこの化学過程は、有機合成的には過去ほとんど活用されてこなかった[1]。

技術や手法の肝

 著者らはマイルドな酸化過程で発生できるカチオンラジカルをメソリティック開裂前駆体として用いることを考えた。しかしながら、酸化ポテンシャルの低すぎる基質は、開裂後に生じるカルボカチオンが不安定化される懸念があり、バランスを考慮する必要があった。

 そのような観点からTEMPO脱離基がチョイスされた(冒頭図)。1電子酸化のポテンシャルは汎用求核剤と比較しても十分低い(Ep/2 = 0.7V vs Fc/Fc+ in MeCN)、メソリティック開裂によって安定なTEMPOラジカルが生じる、C-O結合も通常よりはるかに弱い((2-phenyl)isopropyl TEMPO etherのBDFEC-O=26 kcal/mol)、にもかかわらず酸化前のTEMPO誘導体は安定で取扱い容易、など諸々の特性が魅力的と考えられた。

主張の有効性検証

①反応条件の最適化

 TEMPOエーテルが可視光レドックス触媒による1電子酸化によってカルボカチオンを生成するかどうかを検証するため、シリルエノールエーテルを用いたカルボカチオン捕捉反応を行なった。光触媒を検討したところ、酸化力の強いRu(bpz)3(BARF)2(E0[Mn*/Mn-1] = +1.07 V)とIr(dF(CF3)ppy)(d(CF3)bpy)PF6 (E0[Mn*/Mn-1] = +1.26V)で反応が効率的に進行した。溶媒はニトロメタンが最適。対照実験として、遮光、光触媒無し、ルイス酸添加の条件を検討したが、目的物はほとんど得られなかった。

②基質一般性の検討

  カルボカチオン側は、ベンジル位・アリル位・3級炭素での反応に限定される。何らかの安定化要素がないと2級カチオン生成へアプローチすることは困難。単純な3級でも、E1脱離が併発して低収率に留まる。シリルエノールエーテルの他には、アリルシラン、アルケニルトリフルオロボレート塩、ヘテロ原子求核剤も用いることが可能。Friedel-Crafts型反応も問題なく進行。

③メカニズムに関する示唆

想定触媒サイクルは下記のとおり。

冒頭論文より引用

まず励起状態のIrがTEMPO誘導体を1電子酸化し、メソリティック開裂により、カルボカチオンを生じる。このカルボカチオンがシリルエノールエーテルとC-C結合を作り、目的物となる。生じたTEMPOラジカルはシリルカチオンと反応し、その際に電子をイリジウムから受け取ってIr(Ⅲ)が再生し、触媒サイクルが完結する。この時にTEMPOラジカルをIrが直接還元してTEMPOアニオンとなる経路は非常に困難となる(E1/2= -1.95 V vs. Fc/Fc+ in MeCN)。しかしTMS基がプロトンの代わりとしてはたらくsilyl-coupled ET過程を想定することで、還元電位が十分に下がり、この触媒サイクルが合理的になると考えられた。

この触媒サイクルは下記2つの実験事実からも支持される。

  • 蛍光消光実験を実施したところ、Ir触媒とTEMPOエーテルを混ぜると濃度依存的消光が起きることが確認された。一方でシリルエノールエーテルとは消光を起こさない。ゆえにIr触媒励起種と最初に反応するのはTEMPOエーテルのほう。
  • TEMPOエーテルのCV測定(MeCN中)を行なったところ、酸化sweepでは2つピークが確認された。 0.71V(vs Fc/Fc+)のピーク、N-O lone pairの酸化に対応し、0.21V(vs Fc/Fc+)のピークはTEMPO・/TEMPO+に対応している。このことから、1電子酸化によるTEMPOラジカルの系中生成が確認された。

議論すべき点

  • TEMPO捕捉がラジカル機構の検証にしばしば用いられるが、可視光レドックス反応や強力な1電子酸化条件に関しては、このような経路が走る可能性を常に想定しておく必要がある。
  • 基質が酸化に弱い部位を持つ場合、TEMPOラジカルがによって捕捉されてしまうため、系が複雑化するか触媒サイクルが回らなくなる可能性がある。
  • 単純な2級カルボカチオンは生成しないが、ほかの安定ラジカル構造を活用することで解決できる可能性もあるか?TEMPOのメチル基をより嵩高くするなどはどうか?
  • TEMPO導入・基質合成にやや難があるため、one-potでできれば活用の幅が広がり、合成上有用性が格段に向上する。C-H結合のHAT切断から生じた炭素ラジカルのTEMPO捕捉などは、一つの手段になるかもしれない。
  • TEMPO以外に同様の効果を示す、よりアクセスしやすい脱離基はないものか?理屈の上では脱離ラジカルが安定であればあるほど、本法の効果は高そうである。

次に読むべき論文は?

  • カルボカチオン反応の不斉触媒化に寄与するキラルカウンターアニオン触媒・イオンペア触媒に関する総説論文[2,3]

参考文献

  1. メソリティック開裂を有機合成に応用した数少ない例:(a) Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3842. DOI: 10.1021/ja015526d (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am. Chem. Soc. 2004, 126, 12596. DOI: 10.1021/ja046125b
  2. Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  3. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. doi:10.1038/nchem.1405
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 香りの化学4
  2. 気になるあの会社~東京エレクトロン~
  3. 近況報告PartIV
  4. 超一流誌による論文選定は恣意的なのか?
  5. ACD/ChemSketch Freeware 12.0
  6. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  7. 【PR】Twitter、はじめました
  8. 研究者のためのマテリアルズインフォティクス入門コンテンツ3選【無…

注目情報

ピックアップ記事

  1. 軽量・透明・断熱!エアロゲル(aerogel)を身近に
  2. チャート式実験器具選択ガイド:洗浄ブラシ・攪拌子編
  3. 日本化学会 平成17年度各賞受賞者決まる
  4. 炭素ー炭素結合を切る触媒
  5. アルケニルアミドに2つアリールを入れる
  6. 有機触媒 / Organocatalyst
  7. 京都賞―受賞化学者一覧
  8. メバスタチン /Mevastatin
  9. サントリー白州蒸溜所
  10. 研究者のためのCG作成術④(レンダリング編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP