[スポンサーリンク]

化学者のつぶやき

メソリティック開裂を経由するカルボカチオンの触媒的生成法

[スポンサーリンク]

2016年、プリンストン大学・Robert R. Knowlesらは、可視光レドックス触媒による1電子酸化を経てアルコキシアミンからカチオンラジカルを生成し、その後メソリティック開裂を進行させ、カルボカチオンを発生させる新手法を開発した。中性条件かつ温和な条件で進行し、酸に弱い基質や酸化されやすい求核剤も使用できる。

“Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations”
Zhu, Q.; Gentry, E. C.; Knowles, R. R.* Angew. Chem. Int. Ed. 2016, 55, 9969. DOI: 10.1002/anie.201604619 (アイキャッチ図は本論文より引用)

問題設定

 カルボカチオンは有機合成において古典的な中間体であるが、複雑化合物や不斉触媒への応用は限定的であり、新しい生成法が望まれている。カルボカチオンの発生法は様々あるが、それぞれ求核剤の制限がある。近年はイオンペアを活用した不斉触媒反応の研究も盛んとなってきているが、不安定なカルボカチオンは制御できないでいる。そこで中性条件でカルボカチオンを発生させる新規触媒反応は合成上、十分な利点と多様な求核剤の使用ができる可能性がある。

 著者らは、メソリティック開裂が問題解決の手法になると考えた。不対電子を近傍に持つ共有結合は、不安定化されることが知られている。このためしばしば自発的に開裂し、中性フリーラジカルとカルボカチオンが生成する。しかしながらこの化学過程は、有機合成的には過去ほとんど活用されてこなかった[1]。

技術や手法の肝

 著者らはマイルドな酸化過程で発生できるカチオンラジカルをメソリティック開裂前駆体として用いることを考えた。しかしながら、酸化ポテンシャルの低すぎる基質は、開裂後に生じるカルボカチオンが不安定化される懸念があり、バランスを考慮する必要があった。

 そのような観点からTEMPO脱離基がチョイスされた(冒頭図)。1電子酸化のポテンシャルは汎用求核剤と比較しても十分低い(Ep/2 = 0.7V vs Fc/Fc+ in MeCN)、メソリティック開裂によって安定なTEMPOラジカルが生じる、C-O結合も通常よりはるかに弱い((2-phenyl)isopropyl TEMPO etherのBDFEC-O=26 kcal/mol)、にもかかわらず酸化前のTEMPO誘導体は安定で取扱い容易、など諸々の特性が魅力的と考えられた。

主張の有効性検証

①反応条件の最適化

 TEMPOエーテルが可視光レドックス触媒による1電子酸化によってカルボカチオンを生成するかどうかを検証するため、シリルエノールエーテルを用いたカルボカチオン捕捉反応を行なった。光触媒を検討したところ、酸化力の強いRu(bpz)3(BARF)2(E0[Mn*/Mn-1] = +1.07 V)とIr(dF(CF3)ppy)(d(CF3)bpy)PF6 (E0[Mn*/Mn-1] = +1.26V)で反応が効率的に進行した。溶媒はニトロメタンが最適。対照実験として、遮光、光触媒無し、ルイス酸添加の条件を検討したが、目的物はほとんど得られなかった。

②基質一般性の検討

  カルボカチオン側は、ベンジル位・アリル位・3級炭素での反応に限定される。何らかの安定化要素がないと2級カチオン生成へアプローチすることは困難。単純な3級でも、E1脱離が併発して低収率に留まる。シリルエノールエーテルの他には、アリルシラン、アルケニルトリフルオロボレート塩、ヘテロ原子求核剤も用いることが可能。Friedel-Crafts型反応も問題なく進行。

③メカニズムに関する示唆

想定触媒サイクルは下記のとおり。

冒頭論文より引用

まず励起状態のIrがTEMPO誘導体を1電子酸化し、メソリティック開裂により、カルボカチオンを生じる。このカルボカチオンがシリルエノールエーテルとC-C結合を作り、目的物となる。生じたTEMPOラジカルはシリルカチオンと反応し、その際に電子をイリジウムから受け取ってIr(Ⅲ)が再生し、触媒サイクルが完結する。この時にTEMPOラジカルをIrが直接還元してTEMPOアニオンとなる経路は非常に困難となる(E1/2= -1.95 V vs. Fc/Fc+ in MeCN)。しかしTMS基がプロトンの代わりとしてはたらくsilyl-coupled ET過程を想定することで、還元電位が十分に下がり、この触媒サイクルが合理的になると考えられた。

この触媒サイクルは下記2つの実験事実からも支持される。

  • 蛍光消光実験を実施したところ、Ir触媒とTEMPOエーテルを混ぜると濃度依存的消光が起きることが確認された。一方でシリルエノールエーテルとは消光を起こさない。ゆえにIr触媒励起種と最初に反応するのはTEMPOエーテルのほう。
  • TEMPOエーテルのCV測定(MeCN中)を行なったところ、酸化sweepでは2つピークが確認された。 0.71V(vs Fc/Fc+)のピーク、N-O lone pairの酸化に対応し、0.21V(vs Fc/Fc+)のピークはTEMPO・/TEMPO+に対応している。このことから、1電子酸化によるTEMPOラジカルの系中生成が確認された。

議論すべき点

  • TEMPO捕捉がラジカル機構の検証にしばしば用いられるが、可視光レドックス反応や強力な1電子酸化条件に関しては、このような経路が走る可能性を常に想定しておく必要がある。
  • 基質が酸化に弱い部位を持つ場合、TEMPOラジカルがによって捕捉されてしまうため、系が複雑化するか触媒サイクルが回らなくなる可能性がある。
  • 単純な2級カルボカチオンは生成しないが、ほかの安定ラジカル構造を活用することで解決できる可能性もあるか?TEMPOのメチル基をより嵩高くするなどはどうか?
  • TEMPO導入・基質合成にやや難があるため、one-potでできれば活用の幅が広がり、合成上有用性が格段に向上する。C-H結合のHAT切断から生じた炭素ラジカルのTEMPO捕捉などは、一つの手段になるかもしれない。
  • TEMPO以外に同様の効果を示す、よりアクセスしやすい脱離基はないものか?理屈の上では脱離ラジカルが安定であればあるほど、本法の効果は高そうである。

次に読むべき論文は?

  • カルボカチオン反応の不斉触媒化に寄与するキラルカウンターアニオン触媒・イオンペア触媒に関する総説論文[2,3]

参考文献

  1. メソリティック開裂を有機合成に応用した数少ない例:(a) Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3842. DOI: 10.1021/ja015526d (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am. Chem. Soc. 2004, 126, 12596. DOI: 10.1021/ja046125b
  2. Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  3. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. doi:10.1038/nchem.1405

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学工場災害事例 ~爆発事故に学ぶ~
  2. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  3. 第五回ケムステVシンポジウム「最先端ケムバイオ」開催報告
  4. 膨潤が引き起こす架橋高分子のメカノクロミズム
  5. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  6. 芳香族ニトロ化合物のクロスカップリング反応
  7. 化学研究ライフハック:情報収集の機会損失を減らす「Read It…
  8. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェッ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プラスチックに数層の分子配向膜を形成する手法の開発
  2. クリック反応を用いて、機能性分子を持つイナミド類を自在合成!
  3. ナノチューブを大量生産、産業技術総合研が技術開発
  4. ジメチル(2-ピリジル)シリル化合物
  5. 化学企業のグローバル・トップ50
  6. アルツハイマー原因物質、緑茶成分に抑制機能・埼玉医大など
  7. 疑惑の論文200本発見 米大が盗作探知プログラム開発
  8. 分子モーター / Molecular Motor
  9. メソポーラスシリカ(1)
  10. パテントクリフの打撃顕著に:2012製薬業績

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

分子のねじれの強さを調節して分子運動を制御する

第602回のスポットライトリサーチは、東京大学大学院理学系研究科 塩谷研究室の中島 朋紀(なかじま …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP