[スポンサーリンク]

化学者のつぶやき

メソリティック開裂を経由するカルボカチオンの触媒的生成法

[スポンサーリンク]

2016年、プリンストン大学・Robert R. Knowlesらは、可視光レドックス触媒による1電子酸化を経てアルコキシアミンからカチオンラジカルを生成し、その後メソリティック開裂を進行させ、カルボカチオンを発生させる新手法を開発した。中性条件かつ温和な条件で進行し、酸に弱い基質や酸化されやすい求核剤も使用できる。

“Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations”
Zhu, Q.; Gentry, E. C.; Knowles, R. R.* Angew. Chem. Int. Ed. 2016, 55, 9969. DOI: 10.1002/anie.201604619 (アイキャッチ図は本論文より引用)

問題設定

 カルボカチオンは有機合成において古典的な中間体であるが、複雑化合物や不斉触媒への応用は限定的であり、新しい生成法が望まれている。カルボカチオンの発生法は様々あるが、それぞれ求核剤の制限がある。近年はイオンペアを活用した不斉触媒反応の研究も盛んとなってきているが、不安定なカルボカチオンは制御できないでいる。そこで中性条件でカルボカチオンを発生させる新規触媒反応は合成上、十分な利点と多様な求核剤の使用ができる可能性がある。

 著者らは、メソリティック開裂が問題解決の手法になると考えた。不対電子を近傍に持つ共有結合は、不安定化されることが知られている。このためしばしば自発的に開裂し、中性フリーラジカルとカルボカチオンが生成する。しかしながらこの化学過程は、有機合成的には過去ほとんど活用されてこなかった[1]。

技術や手法の肝

 著者らはマイルドな酸化過程で発生できるカチオンラジカルをメソリティック開裂前駆体として用いることを考えた。しかしながら、酸化ポテンシャルの低すぎる基質は、開裂後に生じるカルボカチオンが不安定化される懸念があり、バランスを考慮する必要があった。

 そのような観点からTEMPO脱離基がチョイスされた(冒頭図)。1電子酸化のポテンシャルは汎用求核剤と比較しても十分低い(Ep/2 = 0.7V vs Fc/Fc+ in MeCN)、メソリティック開裂によって安定なTEMPOラジカルが生じる、C-O結合も通常よりはるかに弱い((2-phenyl)isopropyl TEMPO etherのBDFEC-O=26 kcal/mol)、にもかかわらず酸化前のTEMPO誘導体は安定で取扱い容易、など諸々の特性が魅力的と考えられた。

主張の有効性検証

①反応条件の最適化

 TEMPOエーテルが可視光レドックス触媒による1電子酸化によってカルボカチオンを生成するかどうかを検証するため、シリルエノールエーテルを用いたカルボカチオン捕捉反応を行なった。光触媒を検討したところ、酸化力の強いRu(bpz)3(BARF)2(E0[Mn*/Mn-1] = +1.07 V)とIr(dF(CF3)ppy)(d(CF3)bpy)PF6 (E0[Mn*/Mn-1] = +1.26V)で反応が効率的に進行した。溶媒はニトロメタンが最適。対照実験として、遮光、光触媒無し、ルイス酸添加の条件を検討したが、目的物はほとんど得られなかった。

②基質一般性の検討

  カルボカチオン側は、ベンジル位・アリル位・3級炭素での反応に限定される。何らかの安定化要素がないと2級カチオン生成へアプローチすることは困難。単純な3級でも、E1脱離が併発して低収率に留まる。シリルエノールエーテルの他には、アリルシラン、アルケニルトリフルオロボレート塩、ヘテロ原子求核剤も用いることが可能。Friedel-Crafts型反応も問題なく進行。

③メカニズムに関する示唆

想定触媒サイクルは下記のとおり。

冒頭論文より引用

まず励起状態のIrがTEMPO誘導体を1電子酸化し、メソリティック開裂により、カルボカチオンを生じる。このカルボカチオンがシリルエノールエーテルとC-C結合を作り、目的物となる。生じたTEMPOラジカルはシリルカチオンと反応し、その際に電子をイリジウムから受け取ってIr(Ⅲ)が再生し、触媒サイクルが完結する。この時にTEMPOラジカルをIrが直接還元してTEMPOアニオンとなる経路は非常に困難となる(E1/2= -1.95 V vs. Fc/Fc+ in MeCN)。しかしTMS基がプロトンの代わりとしてはたらくsilyl-coupled ET過程を想定することで、還元電位が十分に下がり、この触媒サイクルが合理的になると考えられた。

この触媒サイクルは下記2つの実験事実からも支持される。

  • 蛍光消光実験を実施したところ、Ir触媒とTEMPOエーテルを混ぜると濃度依存的消光が起きることが確認された。一方でシリルエノールエーテルとは消光を起こさない。ゆえにIr触媒励起種と最初に反応するのはTEMPOエーテルのほう。
  • TEMPOエーテルのCV測定(MeCN中)を行なったところ、酸化sweepでは2つピークが確認された。 0.71V(vs Fc/Fc+)のピーク、N-O lone pairの酸化に対応し、0.21V(vs Fc/Fc+)のピークはTEMPO・/TEMPO+に対応している。このことから、1電子酸化によるTEMPOラジカルの系中生成が確認された。

議論すべき点

  • TEMPO捕捉がラジカル機構の検証にしばしば用いられるが、可視光レドックス反応や強力な1電子酸化条件に関しては、このような経路が走る可能性を常に想定しておく必要がある。
  • 基質が酸化に弱い部位を持つ場合、TEMPOラジカルがによって捕捉されてしまうため、系が複雑化するか触媒サイクルが回らなくなる可能性がある。
  • 単純な2級カルボカチオンは生成しないが、ほかの安定ラジカル構造を活用することで解決できる可能性もあるか?TEMPOのメチル基をより嵩高くするなどはどうか?
  • TEMPO導入・基質合成にやや難があるため、one-potでできれば活用の幅が広がり、合成上有用性が格段に向上する。C-H結合のHAT切断から生じた炭素ラジカルのTEMPO捕捉などは、一つの手段になるかもしれない。
  • TEMPO以外に同様の効果を示す、よりアクセスしやすい脱離基はないものか?理屈の上では脱離ラジカルが安定であればあるほど、本法の効果は高そうである。

次に読むべき論文は?

  • カルボカチオン反応の不斉触媒化に寄与するキラルカウンターアニオン触媒・イオンペア触媒に関する総説論文[2,3]

参考文献

  1. メソリティック開裂を有機合成に応用した数少ない例:(a) Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3842. DOI: 10.1021/ja015526d (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am. Chem. Soc. 2004, 126, 12596. DOI: 10.1021/ja046125b
  2. Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  3. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. doi:10.1038/nchem.1405
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ゴードン会議に参加しました【アメリカで Ph.D. を取る: 国…
  2. 理系ライターは研究紹介記事をどうやって書いているか
  3. 開催間近!ケムステも出るサイエンスアゴラ2013
  4. 変わったガラス器具達
  5. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  6. タンパク質の定量法―ローリー法 Protein Quantifi…
  7. 反応経路自動探索が見いだした新規3成分複素環構築法
  8. 核酸医薬の物語1「化学と生物学が交差するとき」

注目情報

ピックアップ記事

  1. 出張増の強い味方!「エクスプレス予約」
  2. 美しきガラス器具製作の世界
  3. 水素化ホウ素亜鉛 Zinc Bodohydride
  4. C–C, C–F, C–Nを切ってC–N, C–Fを繋げるβ-フルオロアミン合成
  5. 自宅での仕事に飽きたらプレゼン動画を見よう
  6. 子供と一緒にネットで化学実験を楽しもう!
  7. 原野 幸治 Koji Harano
  8. 創発型研究のススメー日本化学会「化学と工業:論説」より
  9. 第6回慶應有機化学若手シンポジウム
  10. 重いキノン

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP