[スポンサーリンク]

化学者のつぶやき

メソリティック開裂を経由するカルボカチオンの触媒的生成法

[スポンサーリンク]

2016年、プリンストン大学・Robert R. Knowlesらは、可視光レドックス触媒による1電子酸化を経てアルコキシアミンからカチオンラジカルを生成し、その後メソリティック開裂を進行させ、カルボカチオンを発生させる新手法を開発した。中性条件かつ温和な条件で進行し、酸に弱い基質や酸化されやすい求核剤も使用できる。

“Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations”
Zhu, Q.; Gentry, E. C.; Knowles, R. R.* Angew. Chem. Int. Ed. 2016, 55, 9969. DOI: 10.1002/anie.201604619 (アイキャッチ図は本論文より引用)

問題設定

 カルボカチオンは有機合成において古典的な中間体であるが、複雑化合物や不斉触媒への応用は限定的であり、新しい生成法が望まれている。カルボカチオンの発生法は様々あるが、それぞれ求核剤の制限がある。近年はイオンペアを活用した不斉触媒反応の研究も盛んとなってきているが、不安定なカルボカチオンは制御できないでいる。そこで中性条件でカルボカチオンを発生させる新規触媒反応は合成上、十分な利点と多様な求核剤の使用ができる可能性がある。

 著者らは、メソリティック開裂が問題解決の手法になると考えた。不対電子を近傍に持つ共有結合は、不安定化されることが知られている。このためしばしば自発的に開裂し、中性フリーラジカルとカルボカチオンが生成する。しかしながらこの化学過程は、有機合成的には過去ほとんど活用されてこなかった[1]。

技術や手法の肝

 著者らはマイルドな酸化過程で発生できるカチオンラジカルをメソリティック開裂前駆体として用いることを考えた。しかしながら、酸化ポテンシャルの低すぎる基質は、開裂後に生じるカルボカチオンが不安定化される懸念があり、バランスを考慮する必要があった。

 そのような観点からTEMPO脱離基がチョイスされた(冒頭図)。1電子酸化のポテンシャルは汎用求核剤と比較しても十分低い(Ep/2 = 0.7V vs Fc/Fc+ in MeCN)、メソリティック開裂によって安定なTEMPOラジカルが生じる、C-O結合も通常よりはるかに弱い((2-phenyl)isopropyl TEMPO etherのBDFEC-O=26 kcal/mol)、にもかかわらず酸化前のTEMPO誘導体は安定で取扱い容易、など諸々の特性が魅力的と考えられた。

主張の有効性検証

①反応条件の最適化

 TEMPOエーテルが可視光レドックス触媒による1電子酸化によってカルボカチオンを生成するかどうかを検証するため、シリルエノールエーテルを用いたカルボカチオン捕捉反応を行なった。光触媒を検討したところ、酸化力の強いRu(bpz)3(BARF)2(E0[Mn*/Mn-1] = +1.07 V)とIr(dF(CF3)ppy)(d(CF3)bpy)PF6 (E0[Mn*/Mn-1] = +1.26V)で反応が効率的に進行した。溶媒はニトロメタンが最適。対照実験として、遮光、光触媒無し、ルイス酸添加の条件を検討したが、目的物はほとんど得られなかった。

②基質一般性の検討

  カルボカチオン側は、ベンジル位・アリル位・3級炭素での反応に限定される。何らかの安定化要素がないと2級カチオン生成へアプローチすることは困難。単純な3級でも、E1脱離が併発して低収率に留まる。シリルエノールエーテルの他には、アリルシラン、アルケニルトリフルオロボレート塩、ヘテロ原子求核剤も用いることが可能。Friedel-Crafts型反応も問題なく進行。

③メカニズムに関する示唆

想定触媒サイクルは下記のとおり。

冒頭論文より引用

まず励起状態のIrがTEMPO誘導体を1電子酸化し、メソリティック開裂により、カルボカチオンを生じる。このカルボカチオンがシリルエノールエーテルとC-C結合を作り、目的物となる。生じたTEMPOラジカルはシリルカチオンと反応し、その際に電子をイリジウムから受け取ってIr(Ⅲ)が再生し、触媒サイクルが完結する。この時にTEMPOラジカルをIrが直接還元してTEMPOアニオンとなる経路は非常に困難となる(E1/2= -1.95 V vs. Fc/Fc+ in MeCN)。しかしTMS基がプロトンの代わりとしてはたらくsilyl-coupled ET過程を想定することで、還元電位が十分に下がり、この触媒サイクルが合理的になると考えられた。

この触媒サイクルは下記2つの実験事実からも支持される。

  • 蛍光消光実験を実施したところ、Ir触媒とTEMPOエーテルを混ぜると濃度依存的消光が起きることが確認された。一方でシリルエノールエーテルとは消光を起こさない。ゆえにIr触媒励起種と最初に反応するのはTEMPOエーテルのほう。
  • TEMPOエーテルのCV測定(MeCN中)を行なったところ、酸化sweepでは2つピークが確認された。 0.71V(vs Fc/Fc+)のピーク、N-O lone pairの酸化に対応し、0.21V(vs Fc/Fc+)のピークはTEMPO・/TEMPO+に対応している。このことから、1電子酸化によるTEMPOラジカルの系中生成が確認された。

議論すべき点

  • TEMPO捕捉がラジカル機構の検証にしばしば用いられるが、可視光レドックス反応や強力な1電子酸化条件に関しては、このような経路が走る可能性を常に想定しておく必要がある。
  • 基質が酸化に弱い部位を持つ場合、TEMPOラジカルがによって捕捉されてしまうため、系が複雑化するか触媒サイクルが回らなくなる可能性がある。
  • 単純な2級カルボカチオンは生成しないが、ほかの安定ラジカル構造を活用することで解決できる可能性もあるか?TEMPOのメチル基をより嵩高くするなどはどうか?
  • TEMPO導入・基質合成にやや難があるため、one-potでできれば活用の幅が広がり、合成上有用性が格段に向上する。C-H結合のHAT切断から生じた炭素ラジカルのTEMPO捕捉などは、一つの手段になるかもしれない。
  • TEMPO以外に同様の効果を示す、よりアクセスしやすい脱離基はないものか?理屈の上では脱離ラジカルが安定であればあるほど、本法の効果は高そうである。

次に読むべき論文は?

  • カルボカチオン反応の不斉触媒化に寄与するキラルカウンターアニオン触媒・イオンペア触媒に関する総説論文[2,3]

参考文献

  1. メソリティック開裂を有機合成に応用した数少ない例:(a) Kumar, V. S.; Floreancig, P. E. J. Am. Chem. Soc. 2001, 123, 3842. DOI: 10.1021/ja015526d (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am. Chem. Soc. 2004, 126, 12596. DOI: 10.1021/ja046125b
  2. Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52, 534. DOI: 10.1002/anie.201205449
  3. Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012, 4, 603. doi:10.1038/nchem.1405
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ICMSE International Conference o…
  2. 製品開発職を検討する上でおさえたい3つのポイント
  3. 2013年(第29回)日本国際賞 受賞記念講演会
  4. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  5. NMRの測定がうまくいかないとき(2)
  6. テルペンを酸化的に”飾り付ける”
  7. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  8. 親子で楽しめる化学映像集 その1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 炭素-炭素結合活性化反応 C-C Bond Activation
  2. ご注文は海外大学院ですか?〜選考編〜
  3. アルゼンチン キプロス
  4. シガトキシン /ciguatoxin
  5. CASがSciFinder-nの新しい予測逆合成機能を発表
  6. “匂いのゴジラ”の無効化
  7. セントラル硝子、工程ノウハウも発明報奨制度対象に
  8. 徹底比較 特許と論文の違い ~明細書、審査編~
  9. ドライアイスに御用心
  10. 第18回次世代を担う有機化学シンポジウム

関連商品

注目情報

注目情報

最新記事

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

コロナウイルスが免疫システムから逃れる方法(1)

新型コロナウイルスによる感染症が、世界中で猛威を振るっています。この記事を書いている私も、大学の閉鎖…

Chem-Station Twitter

PAGE TOP