[スポンサーリンク]

ケムステニュース

夏本番なのに「冷たい炭酸」危機?液炭・ドライアイスの需給不安膨らむ

[スポンサーリンク]

夏本番となり液化炭酸ガスやドライアイスの需要期を迎えた。液炭は石油精製やアンモニア製造工程の副生ガスとして発生する二酸化炭素(CO2)を原料とするが、近年、老朽化による設備トラブルや製油所の稼働率減少で需給逼迫(ひっぱく)が慢性化している。今年は特に西日本を中心に4月から顕著になっており、液炭を一番多く使用する溶接や飲料用の影響が懸念されている。コスト高などを嫌気する需要家からは、早期解消を望む声が多い。 (引用:日刊工業新聞8月17日)

6月にヘリウムが不足していることを報告しましたが、液化二酸化炭素(液炭)も不足しているようです。

液炭は2018年度に国内で77万トンの需要があり、全需要のうち約半分がアーク溶接で使われ、18%が飲料用、10%が冷却用に使われまています。アーク溶接では、溶接部に空気が存在すると酸化や窒化が促進されてしまうため、それを防ぐために二酸化炭素などを溶接部に吹き込むことが行われています。冷却用というのは、ドライアイスとしての冷却を指し、例えば低温の合成実験を行う際にはドライアイスに有機溶媒を加えたアイスバスで温度をコントロールします。

2018年度の割合(出典:日本産業・医療ガス協会

過去五年の液炭の出荷量(出典:日本産業・医療ガス協会

液炭の製造は、他の合成プロセスから副生成物として発生した二酸化炭素を活用して行われています。具体的には、二酸化炭素が発生する化学プラントよりガスラインで二酸化炭素の供給を受けた後、圧縮して液化させます。その後、吸着塔を通したり蒸留することで純度を高められた後、ガスボンベに充填されます。ドライアイスの場合にはこの液化ガスをさらにプレス機に加えて圧縮することで作られます。

ドライアイス簡易製造装置、1回で1Kgほどのドライアイスを製造できる

この液炭の不足は、供給を受ける化学プラントがトラブルなどで長期間停止し、二酸化炭素の生産を中止する事態になったことが原因です。化学プラントの老朽化や日本での化学品の需要の低下によるプラントの停止など、今後も安定的に生産できないリスクを抱えており、各社新しい液炭の生産拠点を新設やドライアイスの輸入を始めています。

液炭製造設備の新設状況

  • 日本液炭:2015年に三菱化学水島事業所で発生する二酸化炭素を活用した液炭設備を新設、2017年に稼働開始
  • 昭和電工:大分石油化学コンビナート内に液炭製造設備を新設、2019年4月に稼働開始
  • 大阪ガスリキッド:国際石油開発帝石が天然ガスを都市ガスへ精製する過程で取り除く二酸化炭素を利用する液炭設備を2021年4月に稼働予定
  • 岩谷産業:6月から韓国よりドライアイスを輸入、中国からの輸入も検討中

プラントから供給を受ける二酸化炭素は、純度が高いほうが好都合です。現在はアンモニアの製造プラントや石油精製プラントから二酸化炭素の供給を受けています。アンモニアは、ハーバー・ボッシュ法によって合成されるため水素が必要で、石油精製でも中間体に水素添加するプロセスがあります。これらの水素は炭化水素の水蒸気改質などによって合成されるため、二酸化炭素のみが副生します。そのため、二酸化炭素は水素を使うプロセスがあるプラントの隣で製造されています。もちろん、二酸化炭素は他のプラントや工場、火力発電所、ごみ処理場などでも大量に排出されていて貴重な材料ではありませんが、単純な燃焼によって発生したガスには二酸化炭素だけでなくほかの成分も含まれているため、必要な純度まで高める精製コストがかさみ販売価格に合わなくなります。そのため、液炭の製造に適する化学プラントは限られているのが現状です。

二酸化炭素の排出について厳しくなる一方、産業用の二酸化炭素は不足しているという矛盾しているような状況ですが、大気中の二酸化炭素をこれ以上増加させないために地中に埋蔵する計画があります。その際にも二酸化炭素のみを地中に送り込む必要があり、二酸化炭素の精製技術が研究されています。つまり埋蔵技術が進歩すれば、高純度の二酸化炭素を得られる機会が増え、液炭の不足に関する問題も解決するのではないでしょうか。

関連書籍

[amazonjs asin=”4907002548″ locale=”JP” title=”二酸化炭素を用いた化学品製造技術”] [amazonjs asin=”4022558954″ locale=”JP” title=”炭酸ガス―命を支える不思議な物質”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 化学の力で名画の謎を解き明かす
  2. 「日本化学連合」が発足、化学系学協会18団体加盟
  3. 吉岡里帆さんが出演する企業ブランド広告の特設サイト「DIC岡里帆…
  4. 原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ…
  5. ふるい”で気体分離…京大チーム
  6. 中国産ウナギから合成抗菌剤、厚労省が検査義務づけ
  7. メリフィールド氏死去 ノーベル化学賞受賞者
  8. 旭化成の吉野彰氏 リチウムイオン電池技術の発明・改良で 2019…

注目情報

ピックアップ記事

  1. リアルタイムで分子の自己組織化を観察・操作することに成功
  2. ビニルモノマーの超精密合成法の開発:モノマー配列、分子量、立体構造の多重制御
  3. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TMAO の機能溶液化学を、分⼦間相互作⽤の時空間精細解析で解明
  4. ポンコツ博士の海外奮闘録XXI ~博士,反応を処理する~
  5. IBX酸化 IBX Oxidation
  6. 第四回 ケムステVシンポ「持続可能社会をつくるバイオプラスチック」
  7. ダルツェンス縮合反応 Darzens Condensation
  8. 中国へ講演旅行へいってきました①
  9. 三菱化学、より自然光に近い白色LED用の材料開発
  10. フランスの著名ブロガー、クリーム泡立器の事故で死亡

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP