[スポンサーリンク]

化学者のつぶやき

Ru触媒で異なるアルキン同士をantiで付加させる

[スポンサーリンク]

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役エンイン骨格構築の新たなアプローチとして期待される。

アルキン同士のジアステレオ選択的付加反応

 異なるアルキン同士の付加反応は、有用な共役エンイン骨格を合成できるため重要である(図1A)。これまでに種々の遷移金属触媒を用いる手法が報告されており、内部アルキンに対し末端アルキンが付加するヒドロアルキニル化反応やハロアルキンが付加するハロアルキニル化反応が知られる[1][2]。いずれの付加反応もsyn選択的に進行しZ体を与えるのが一般的である。例外として、ZhuらがPd触媒を用いた末端アルキンのanti選択的なヒドロアルキニル化反応を報告したが、適用できる基質は電子的な偏りの大きいN-スルホニルイナミドに限られていた(図1B)[3]

 一方で、これまでにTrostらが[CpRu(MeCN)3]PF6を、また本論文著者であるFürstnerらは[Cp*RuCl]4を触媒としてアルキンのanti水素化反応やantiヒドロメタル化の開発に成功している(図1C)[4]。Fürstnerらのantiヒドロメタル化では、ルテニウム上の塩素原子が配向基のように働き、Ru-アルキン錯体中間体Aを形成することで高い位置選択性も発現する。

 今回著者らは、[Cp*RuCl]4触媒存在下、異なるアルキン同士のanti選択的なヒドロアルキニル化反応およびクロロアルキニル化反応を開発した(図1D)。本反応は様々な基質に適用可能であり、いずれにおいても高いanti選択性を示す。

図1. (A)アルキンのsyn付加反応、(B)イナミドに対するantiヒドロアルキニル化、(C)以前の著者の反応、(D)今回の反応

“Ruthenium-Catalyzed trans-Hydroalkynylation and trans-Chloroalkynylation of Internal Alkynes”

Barsu, N.; Leutzsch, M.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 18746–18752.

DOI: 10.1021/jacs.0c08582

論文著者の紹介

研究者:Alois Fürstner 

研究者の経歴:

–1987                  Ph.D., Technical University Graz, Austria (Prof. Hans Weidmann)
1990–1991 Postdoc, University of Geneva, Switzerland (Prof. Wolfgang Oppolzer)
1992–                             Habilitation, Technical University Graz, Austria
1993–1998 Group leader, Max-Planck-Institut für Kohlenforschung and Lecturer, University of Dortmund, Germany
1998–                             Professor, Max-Planck-Institut für Kohlenforschung and Director, Max-Planck-Institut für Kohlenforschung, Germany
2009–2017 Managing Director, Max-Planck-Institut für Kohlenforschung, Germany

研究内容:アルキン・アルケンメタセシスの開発、新規有機金属触媒反応の開発、触媒的生物活性分子合成

論文の概要

 本反応では、[Cp*RuCl]4を触媒とし、内部アルキン1とトリイソプロピルシリル(TIPS)基をもつ末端アルキン2をジクロロエタン溶媒中80 °Cで反応させると、高anti選択的なヒドロアルキニル化反応が進行し共役エンイン3を与える(図2A)。また、2にクロロアルキンを用いればクロロアルキニル化反応も進行する。官能基許容性も高く、シクロプロピル基、ラクトン、チエニル基、エステルなどをもつ1が反応し、対応する3が良好な収率で生成する(図2B, 3a3d)。また、非対称内部アルキンとしてアリール-2-プロピンを反応させた際は、反応が高位置およびジアステレオ選択的に進行し、主生成物として4が得られる(4e, 4f)。

 著者らは機構解明研究として、種々の反応中間体として想定される錯体を合成した(図2C)。[Cp*RuCl]4とTIPSクロロアルキン7を–50 °Cで反応させたところ、錯体8が得られた。単結晶X線構造解析の結果、アルキンのSi原子がRu–Cl部位と相互作用していることがわかった。また、[Cp*RuCl]4、内部アルキン97の触媒反応条件下や化学量論量反応条件下(25 °C)で、錯体8が生成していることがNMRで観測された。以上の結果から著者らは、本反応は錯体8を経由していると結論づけた(詳細は論文参照)。今後の研究により錯体8と内部アルキンとの反応の詳細な機構が解明されることに期待したい。

図 2. (A)最適反応条件、(B)基質適用範囲、(C)機構解明研究

 

以上、Ru触媒を用いた内部アルキンのanti選択的ヒドロアルキニル化およびクロロアルキニル化反応が開発された。今後、本反応が創薬など実践的な合成化学に応用されることが期待できる。

参考文献

  1. Garcia-Garrido, S. E. In Modern Alkyne Chemistry; Trost, B. M., Li, C.-J, Eds.; Wiley-VCH: Weinheim, 2015; pp 301–334.
  2. (a) Kreuzahler, M.; Haberhauer, G. Gold(I)-Catalyzed Haloalkynalytion of Aryl Alkynes: Two Pathways, One Goal. Angew. Chem., Int. Ed. 2020, 59, 9433–9437. DOI: 10.1002/anie.201916027 (b) Wada, T.; Iwasaki, M.; Kondoh, A.; Yorimitsu, H.; Oshima, K. Palladium-Catalyzed Addition of Silyl-Substituted Chloroalkynes to Terminal Alkynes. Chem. Eur. J. 2010, 16, 10671–10674. DOI: 10.1002/chem.201000865 (c) Li, Y.; Liu, X.; Jiang, H.; Feng, Z. Expedient Synthesis of Functionalized Conjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes. Angew. Chem., Int. Ed. 2010, 49, 3338–3341. DOI: 10.1002/anie.201000003 (d) Morishita, T.; Yoshida, H.; Ohshita, J. Copper-Catalysed Bromoalkynlation of Arynes. Chem. Commun. 2010, 46, 640–642. DOI: 10.1039/B919301D
  3. Liu, G.; Kong, W.; Che, J.; Zhu, G. Palladium-Catalyzed Cross Addition of Terminal Alkynes to Aryl Ynamides: An Unusual trans-Hydroalkynylation Reaction. Adv. Synth. Catal. 2014, 356, 3314–3318. DOI: 10.1002/adsc.201400572
  4. (a) Guthertz, A.; Leutzsch, M.; Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Farès, C.; Thiel, W.; Fürstner, A. Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 3156–3159. DOI: 10.1021/jacs.8b00665 (b) Rosca, D.-A.; Radkowski, K.; Wolf, L. M.; Wagh, M.; Goddard, R.; Thiel, W.; Fürstner, A. Ruthenium-Catalyzed Alkyne trans-Hydrometalation: Mechanistic Insights and Preparative Implications. J. Am. Chem. Soc. 2017, 139, 2443–2455. DOI: 10.1021/jacs.6b12517 (C) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644–17655, DOI: 10.1021/ja0528580
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用…
  2. 続・名刺を作ろう―ブロガー向け格安サービス活用のススメ
  3. 研究者・技術系ベンチャー向けアクセラレーションプログラムR…
  4. アキラル色素分子にキラル光学特性を付与するミセルを開発
  5. Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵…
  6. 高選択的な不斉触媒系を機械学習で予測する
  7. 文具に凝るといふことを化学者もしてみむとてするなり⑫: XP-P…
  8. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…

注目情報

ピックアップ記事

  1. 光照射下に繰り返し運動をおこなう分子集合体
  2. クラレが防湿フィルム開発の米ベンチャー企業と戦略的パートナーシップ
  3. 素材・化学で「どう作るか」を高度化する共同研究拠点、産総研が3カ所で整備
  4. Horner-Emmons 試薬
  5. 自己紹介で差がつく3つのポイント
  6. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  7. 千葉大など「シナモンマスク」を商品化 インフル予防効果に期待
  8. ジャン=ピエール・ソヴァージュ Jean-Pierre Sauvage
  9. ヒノキチオール (hinokitiol)
  10. 僅か3時間でヒトのテロメア長を検出!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP