[スポンサーリンク]

化学者のつぶやき

Ru触媒で異なるアルキン同士をantiで付加させる

[スポンサーリンク]

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役エンイン骨格構築の新たなアプローチとして期待される。

アルキン同士のジアステレオ選択的付加反応

 異なるアルキン同士の付加反応は、有用な共役エンイン骨格を合成できるため重要である(図1A)。これまでに種々の遷移金属触媒を用いる手法が報告されており、内部アルキンに対し末端アルキンが付加するヒドロアルキニル化反応やハロアルキンが付加するハロアルキニル化反応が知られる[1][2]。いずれの付加反応もsyn選択的に進行しZ体を与えるのが一般的である。例外として、ZhuらがPd触媒を用いた末端アルキンのanti選択的なヒドロアルキニル化反応を報告したが、適用できる基質は電子的な偏りの大きいN-スルホニルイナミドに限られていた(図1B)[3]

 一方で、これまでにTrostらが[CpRu(MeCN)3]PF6を、また本論文著者であるFürstnerらは[Cp*RuCl]4を触媒としてアルキンのanti水素化反応やantiヒドロメタル化の開発に成功している(図1C)[4]。Fürstnerらのantiヒドロメタル化では、ルテニウム上の塩素原子が配向基のように働き、Ru-アルキン錯体中間体Aを形成することで高い位置選択性も発現する。

 今回著者らは、[Cp*RuCl]4触媒存在下、異なるアルキン同士のanti選択的なヒドロアルキニル化反応およびクロロアルキニル化反応を開発した(図1D)。本反応は様々な基質に適用可能であり、いずれにおいても高いanti選択性を示す。

図1. (A)アルキンのsyn付加反応、(B)イナミドに対するantiヒドロアルキニル化、(C)以前の著者の反応、(D)今回の反応

“Ruthenium-Catalyzed trans-Hydroalkynylation and trans-Chloroalkynylation of Internal Alkynes”

Barsu, N.; Leutzsch, M.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 18746–18752.

DOI: 10.1021/jacs.0c08582

論文著者の紹介

研究者:Alois Fürstner 

研究者の経歴:

–1987                  Ph.D., Technical University Graz, Austria (Prof. Hans Weidmann)
1990–1991 Postdoc, University of Geneva, Switzerland (Prof. Wolfgang Oppolzer)
1992–                             Habilitation, Technical University Graz, Austria
1993–1998 Group leader, Max-Planck-Institut für Kohlenforschung and Lecturer, University of Dortmund, Germany
1998–                             Professor, Max-Planck-Institut für Kohlenforschung and Director, Max-Planck-Institut für Kohlenforschung, Germany
2009–2017 Managing Director, Max-Planck-Institut für Kohlenforschung, Germany

研究内容:アルキン・アルケンメタセシスの開発、新規有機金属触媒反応の開発、触媒的生物活性分子合成

論文の概要

 本反応では、[Cp*RuCl]4を触媒とし、内部アルキン1とトリイソプロピルシリル(TIPS)基をもつ末端アルキン2をジクロロエタン溶媒中80 °Cで反応させると、高anti選択的なヒドロアルキニル化反応が進行し共役エンイン3を与える(図2A)。また、2にクロロアルキンを用いればクロロアルキニル化反応も進行する。官能基許容性も高く、シクロプロピル基、ラクトン、チエニル基、エステルなどをもつ1が反応し、対応する3が良好な収率で生成する(図2B, 3a3d)。また、非対称内部アルキンとしてアリール-2-プロピンを反応させた際は、反応が高位置およびジアステレオ選択的に進行し、主生成物として4が得られる(4e, 4f)。

 著者らは機構解明研究として、種々の反応中間体として想定される錯体を合成した(図2C)。[Cp*RuCl]4とTIPSクロロアルキン7を–50 °Cで反応させたところ、錯体8が得られた。単結晶X線構造解析の結果、アルキンのSi原子がRu–Cl部位と相互作用していることがわかった。また、[Cp*RuCl]4、内部アルキン97の触媒反応条件下や化学量論量反応条件下(25 °C)で、錯体8が生成していることがNMRで観測された。以上の結果から著者らは、本反応は錯体8を経由していると結論づけた(詳細は論文参照)。今後の研究により錯体8と内部アルキンとの反応の詳細な機構が解明されることに期待したい。

図 2. (A)最適反応条件、(B)基質適用範囲、(C)機構解明研究

 

以上、Ru触媒を用いた内部アルキンのanti選択的ヒドロアルキニル化およびクロロアルキニル化反応が開発された。今後、本反応が創薬など実践的な合成化学に応用されることが期待できる。

参考文献

  1. Garcia-Garrido, S. E. In Modern Alkyne Chemistry; Trost, B. M., Li, C.-J, Eds.; Wiley-VCH: Weinheim, 2015; pp 301–334.
  2. (a) Kreuzahler, M.; Haberhauer, G. Gold(I)-Catalyzed Haloalkynalytion of Aryl Alkynes: Two Pathways, One Goal. Angew. Chem., Int. Ed. 2020, 59, 9433–9437. DOI: 10.1002/anie.201916027 (b) Wada, T.; Iwasaki, M.; Kondoh, A.; Yorimitsu, H.; Oshima, K. Palladium-Catalyzed Addition of Silyl-Substituted Chloroalkynes to Terminal Alkynes. Chem. Eur. J. 2010, 16, 10671–10674. DOI: 10.1002/chem.201000865 (c) Li, Y.; Liu, X.; Jiang, H.; Feng, Z. Expedient Synthesis of Functionalized Conjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes. Angew. Chem., Int. Ed. 2010, 49, 3338–3341. DOI: 10.1002/anie.201000003 (d) Morishita, T.; Yoshida, H.; Ohshita, J. Copper-Catalysed Bromoalkynlation of Arynes. Chem. Commun. 2010, 46, 640–642. DOI: 10.1039/B919301D
  3. Liu, G.; Kong, W.; Che, J.; Zhu, G. Palladium-Catalyzed Cross Addition of Terminal Alkynes to Aryl Ynamides: An Unusual trans-Hydroalkynylation Reaction. Adv. Synth. Catal. 2014, 356, 3314–3318. DOI: 10.1002/adsc.201400572
  4. (a) Guthertz, A.; Leutzsch, M.; Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Farès, C.; Thiel, W.; Fürstner, A. Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 3156–3159. DOI: 10.1021/jacs.8b00665 (b) Rosca, D.-A.; Radkowski, K.; Wolf, L. M.; Wagh, M.; Goddard, R.; Thiel, W.; Fürstner, A. Ruthenium-Catalyzed Alkyne trans-Hydrometalation: Mechanistic Insights and Preparative Implications. J. Am. Chem. Soc. 2017, 139, 2443–2455. DOI: 10.1021/jacs.6b12517 (C) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644–17655, DOI: 10.1021/ja0528580
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 研究最前線講演会 ~化学系学生のための就職活動Kickoffイベ…
  2. 「夢・化学-21」 夏休み子ども化学実験ショー
  3. ボロールで水素を活性化
  4. 化学系学生のための就活2019
  5. 2020年ケムステ人気記事ランキング
  6. 日米の研究観/技術観の違い
  7. アルカロイドの大量生産
  8. 化学物質の管理が厳格化! -リスクアセスメント-

注目情報

ピックアップ記事

  1. 分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在
  2. トリフルオロ酢酸パラジウム(II) : Trifluoroacetic Acid Palladium(II) Salt
  3. 化学作業着あれこれ
  4. エタール反応 Etard Reaction
  5. 有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン触媒系・環状カーボネート・素粒子・分子ジャイロコマ・テトラベンゾフルオレン・海洋マクロリド
  6. Christoph A. Schalley
  7. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-Lindsey Porphyrin Synthesis
  8. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー
  9. 抗がん剤などの原料の新製造法
  10. 「銅触媒を用いた不斉ヒドロアミノ化反応の開発」-MIT Buchwald研より

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP