[スポンサーリンク]

化学者のつぶやき

Ru触媒で異なるアルキン同士をantiで付加させる

[スポンサーリンク]

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役エンイン骨格構築の新たなアプローチとして期待される。

アルキン同士のジアステレオ選択的付加反応

 異なるアルキン同士の付加反応は、有用な共役エンイン骨格を合成できるため重要である(図1A)。これまでに種々の遷移金属触媒を用いる手法が報告されており、内部アルキンに対し末端アルキンが付加するヒドロアルキニル化反応やハロアルキンが付加するハロアルキニル化反応が知られる[1][2]。いずれの付加反応もsyn選択的に進行しZ体を与えるのが一般的である。例外として、ZhuらがPd触媒を用いた末端アルキンのanti選択的なヒドロアルキニル化反応を報告したが、適用できる基質は電子的な偏りの大きいN-スルホニルイナミドに限られていた(図1B)[3]

 一方で、これまでにTrostらが[CpRu(MeCN)3]PF6を、また本論文著者であるFürstnerらは[Cp*RuCl]4を触媒としてアルキンのanti水素化反応やantiヒドロメタル化の開発に成功している(図1C)[4]。Fürstnerらのantiヒドロメタル化では、ルテニウム上の塩素原子が配向基のように働き、Ru-アルキン錯体中間体Aを形成することで高い位置選択性も発現する。

 今回著者らは、[Cp*RuCl]4触媒存在下、異なるアルキン同士のanti選択的なヒドロアルキニル化反応およびクロロアルキニル化反応を開発した(図1D)。本反応は様々な基質に適用可能であり、いずれにおいても高いanti選択性を示す。

図1. (A)アルキンのsyn付加反応、(B)イナミドに対するantiヒドロアルキニル化、(C)以前の著者の反応、(D)今回の反応

“Ruthenium-Catalyzed trans-Hydroalkynylation and trans-Chloroalkynylation of Internal Alkynes”

Barsu, N.; Leutzsch, M.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 18746–18752.

DOI: 10.1021/jacs.0c08582

論文著者の紹介

研究者:Alois Fürstner 

研究者の経歴:

–1987                  Ph.D., Technical University Graz, Austria (Prof. Hans Weidmann)
1990–1991 Postdoc, University of Geneva, Switzerland (Prof. Wolfgang Oppolzer)
1992–                             Habilitation, Technical University Graz, Austria
1993–1998 Group leader, Max-Planck-Institut für Kohlenforschung and Lecturer, University of Dortmund, Germany
1998–                             Professor, Max-Planck-Institut für Kohlenforschung and Director, Max-Planck-Institut für Kohlenforschung, Germany
2009–2017 Managing Director, Max-Planck-Institut für Kohlenforschung, Germany

研究内容:アルキン・アルケンメタセシスの開発、新規有機金属触媒反応の開発、触媒的生物活性分子合成

論文の概要

 本反応では、[Cp*RuCl]4を触媒とし、内部アルキン1とトリイソプロピルシリル(TIPS)基をもつ末端アルキン2をジクロロエタン溶媒中80 °Cで反応させると、高anti選択的なヒドロアルキニル化反応が進行し共役エンイン3を与える(図2A)。また、2にクロロアルキンを用いればクロロアルキニル化反応も進行する。官能基許容性も高く、シクロプロピル基、ラクトン、チエニル基、エステルなどをもつ1が反応し、対応する3が良好な収率で生成する(図2B, 3a3d)。また、非対称内部アルキンとしてアリール-2-プロピンを反応させた際は、反応が高位置およびジアステレオ選択的に進行し、主生成物として4が得られる(4e, 4f)。

 著者らは機構解明研究として、種々の反応中間体として想定される錯体を合成した(図2C)。[Cp*RuCl]4とTIPSクロロアルキン7を–50 °Cで反応させたところ、錯体8が得られた。単結晶X線構造解析の結果、アルキンのSi原子がRu–Cl部位と相互作用していることがわかった。また、[Cp*RuCl]4、内部アルキン97の触媒反応条件下や化学量論量反応条件下(25 °C)で、錯体8が生成していることがNMRで観測された。以上の結果から著者らは、本反応は錯体8を経由していると結論づけた(詳細は論文参照)。今後の研究により錯体8と内部アルキンとの反応の詳細な機構が解明されることに期待したい。

図 2. (A)最適反応条件、(B)基質適用範囲、(C)機構解明研究

 

以上、Ru触媒を用いた内部アルキンのanti選択的ヒドロアルキニル化およびクロロアルキニル化反応が開発された。今後、本反応が創薬など実践的な合成化学に応用されることが期待できる。

参考文献

  1. Garcia-Garrido, S. E. In Modern Alkyne Chemistry; Trost, B. M., Li, C.-J, Eds.; Wiley-VCH: Weinheim, 2015; pp 301–334.
  2. (a) Kreuzahler, M.; Haberhauer, G. Gold(I)-Catalyzed Haloalkynalytion of Aryl Alkynes: Two Pathways, One Goal. Angew. Chem., Int. Ed. 2020, 59, 9433–9437. DOI: 10.1002/anie.201916027 (b) Wada, T.; Iwasaki, M.; Kondoh, A.; Yorimitsu, H.; Oshima, K. Palladium-Catalyzed Addition of Silyl-Substituted Chloroalkynes to Terminal Alkynes. Chem. Eur. J. 2010, 16, 10671–10674. DOI: 10.1002/chem.201000865 (c) Li, Y.; Liu, X.; Jiang, H.; Feng, Z. Expedient Synthesis of Functionalized Conjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes. Angew. Chem., Int. Ed. 2010, 49, 3338–3341. DOI: 10.1002/anie.201000003 (d) Morishita, T.; Yoshida, H.; Ohshita, J. Copper-Catalysed Bromoalkynlation of Arynes. Chem. Commun. 2010, 46, 640–642. DOI: 10.1039/B919301D
  3. Liu, G.; Kong, W.; Che, J.; Zhu, G. Palladium-Catalyzed Cross Addition of Terminal Alkynes to Aryl Ynamides: An Unusual trans-Hydroalkynylation Reaction. Adv. Synth. Catal. 2014, 356, 3314–3318. DOI: 10.1002/adsc.201400572
  4. (a) Guthertz, A.; Leutzsch, M.; Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Farès, C.; Thiel, W.; Fürstner, A. Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 3156–3159. DOI: 10.1021/jacs.8b00665 (b) Rosca, D.-A.; Radkowski, K.; Wolf, L. M.; Wagh, M.; Goddard, R.; Thiel, W.; Fürstner, A. Ruthenium-Catalyzed Alkyne trans-Hydrometalation: Mechanistic Insights and Preparative Implications. J. Am. Chem. Soc. 2017, 139, 2443–2455. DOI: 10.1021/jacs.6b12517 (C) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644–17655, DOI: 10.1021/ja0528580
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【PR】 Chem-Stationで記事を書いてみませんか?【ス…
  2. 香りの化学2
  3. 無金属、温和な条件下で多置換ピリジンを構築する
  4. 【悲報】HGS 分子構造模型 入手不能に
  5. とある化学者の海外研究生活:アメリカ就職編
  6. 学会に行こう!高校生も研究発表できます
  7. イオンのビリヤードで新しい物質を開発する
  8. 化学者ネットワーク

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ホウ素は求電子剤?求核剤?
  2. トップリス ツリー Topliss Tree
  3. ジメチル(2-ピリジル)シリル化合物
  4. 櫻井英樹 Hideki Sakurai
  5. 液クロ虎の巻シリーズ
  6. パラジウム錯体の酸化還元反応を利用した分子モーター
  7. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応
  8. シガトキシン /ciguatoxin
  9. 高知・フュルスナー クロスカップリング Kochi-Furstner Cross Coupling
  10. カーボンナノチューブ量産技術を国際会議で発表へ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第149回―「ガスの貯蔵・分離・触媒変換に役立つ金属-有機構造体の開発」Banglin Chen教授

第149回の海外化学者インタビューは、バングリン・チェン教授です。テキサス大学サンアントニオ校化学科…

作った分子もペコペコだけど作ったヤツもペコペコした話 –お椀型分子を利用した強誘電体メモリ–

第311回のスポットライトリサーチは、埼玉大学大学院 理工学研究科 基礎化学コー…

【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削減 #リサイクル #液体 #固体 #薄膜 #乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントでは、環境/化学分野の事業・開発課題のソリューションとして、マイクロ波をご紹介…

医療用酸素と工業用酸素の違い

 スズキは29日、インドにある3工場の生産を一時停止すると明らかにした。インドでは新型コロナウイルス…

世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用

第310回のスポットライトリサーチは、千葉大学大学院医学薬学府 (根本研究室)・伊藤 翼さんにお願い…

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

Chem-Station Twitter

PAGE TOP