[スポンサーリンク]

化学者のつぶやき

Ru触媒で異なるアルキン同士をantiで付加させる

[スポンサーリンク]

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役エンイン骨格構築の新たなアプローチとして期待される。

アルキン同士のジアステレオ選択的付加反応

 異なるアルキン同士の付加反応は、有用な共役エンイン骨格を合成できるため重要である(図1A)。これまでに種々の遷移金属触媒を用いる手法が報告されており、内部アルキンに対し末端アルキンが付加するヒドロアルキニル化反応やハロアルキンが付加するハロアルキニル化反応が知られる[1][2]。いずれの付加反応もsyn選択的に進行しZ体を与えるのが一般的である。例外として、ZhuらがPd触媒を用いた末端アルキンのanti選択的なヒドロアルキニル化反応を報告したが、適用できる基質は電子的な偏りの大きいN-スルホニルイナミドに限られていた(図1B)[3]

 一方で、これまでにTrostらが[CpRu(MeCN)3]PF6を、また本論文著者であるFürstnerらは[Cp*RuCl]4を触媒としてアルキンのanti水素化反応やantiヒドロメタル化の開発に成功している(図1C)[4]。Fürstnerらのantiヒドロメタル化では、ルテニウム上の塩素原子が配向基のように働き、Ru-アルキン錯体中間体Aを形成することで高い位置選択性も発現する。

 今回著者らは、[Cp*RuCl]4触媒存在下、異なるアルキン同士のanti選択的なヒドロアルキニル化反応およびクロロアルキニル化反応を開発した(図1D)。本反応は様々な基質に適用可能であり、いずれにおいても高いanti選択性を示す。

図1. (A)アルキンのsyn付加反応、(B)イナミドに対するantiヒドロアルキニル化、(C)以前の著者の反応、(D)今回の反応

“Ruthenium-Catalyzed trans-Hydroalkynylation and trans-Chloroalkynylation of Internal Alkynes”

Barsu, N.; Leutzsch, M.; Fürstner, A. J. Am. Chem. Soc. 2020, 142, 18746–18752.

DOI: 10.1021/jacs.0c08582

論文著者の紹介

研究者:Alois Fürstner 

研究者の経歴:

–1987                  Ph.D., Technical University Graz, Austria (Prof. Hans Weidmann)
1990–1991 Postdoc, University of Geneva, Switzerland (Prof. Wolfgang Oppolzer)
1992–                             Habilitation, Technical University Graz, Austria
1993–1998 Group leader, Max-Planck-Institut für Kohlenforschung and Lecturer, University of Dortmund, Germany
1998–                             Professor, Max-Planck-Institut für Kohlenforschung and Director, Max-Planck-Institut für Kohlenforschung, Germany
2009–2017 Managing Director, Max-Planck-Institut für Kohlenforschung, Germany

研究内容:アルキン・アルケンメタセシスの開発、新規有機金属触媒反応の開発、触媒的生物活性分子合成

論文の概要

 本反応では、[Cp*RuCl]4を触媒とし、内部アルキン1とトリイソプロピルシリル(TIPS)基をもつ末端アルキン2をジクロロエタン溶媒中80 °Cで反応させると、高anti選択的なヒドロアルキニル化反応が進行し共役エンイン3を与える(図2A)。また、2にクロロアルキンを用いればクロロアルキニル化反応も進行する。官能基許容性も高く、シクロプロピル基、ラクトン、チエニル基、エステルなどをもつ1が反応し、対応する3が良好な収率で生成する(図2B, 3a3d)。また、非対称内部アルキンとしてアリール-2-プロピンを反応させた際は、反応が高位置およびジアステレオ選択的に進行し、主生成物として4が得られる(4e, 4f)。

 著者らは機構解明研究として、種々の反応中間体として想定される錯体を合成した(図2C)。[Cp*RuCl]4とTIPSクロロアルキン7を–50 °Cで反応させたところ、錯体8が得られた。単結晶X線構造解析の結果、アルキンのSi原子がRu–Cl部位と相互作用していることがわかった。また、[Cp*RuCl]4、内部アルキン97の触媒反応条件下や化学量論量反応条件下(25 °C)で、錯体8が生成していることがNMRで観測された。以上の結果から著者らは、本反応は錯体8を経由していると結論づけた(詳細は論文参照)。今後の研究により錯体8と内部アルキンとの反応の詳細な機構が解明されることに期待したい。

図 2. (A)最適反応条件、(B)基質適用範囲、(C)機構解明研究

 

以上、Ru触媒を用いた内部アルキンのanti選択的ヒドロアルキニル化およびクロロアルキニル化反応が開発された。今後、本反応が創薬など実践的な合成化学に応用されることが期待できる。

参考文献

  1. Garcia-Garrido, S. E. In Modern Alkyne Chemistry; Trost, B. M., Li, C.-J, Eds.; Wiley-VCH: Weinheim, 2015; pp 301–334.
  2. (a) Kreuzahler, M.; Haberhauer, G. Gold(I)-Catalyzed Haloalkynalytion of Aryl Alkynes: Two Pathways, One Goal. Angew. Chem., Int. Ed. 2020, 59, 9433–9437. DOI: 10.1002/anie.201916027 (b) Wada, T.; Iwasaki, M.; Kondoh, A.; Yorimitsu, H.; Oshima, K. Palladium-Catalyzed Addition of Silyl-Substituted Chloroalkynes to Terminal Alkynes. Chem. Eur. J. 2010, 16, 10671–10674. DOI: 10.1002/chem.201000865 (c) Li, Y.; Liu, X.; Jiang, H.; Feng, Z. Expedient Synthesis of Functionalized Conjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes. Angew. Chem., Int. Ed. 2010, 49, 3338–3341. DOI: 10.1002/anie.201000003 (d) Morishita, T.; Yoshida, H.; Ohshita, J. Copper-Catalysed Bromoalkynlation of Arynes. Chem. Commun. 2010, 46, 640–642. DOI: 10.1039/B919301D
  3. Liu, G.; Kong, W.; Che, J.; Zhu, G. Palladium-Catalyzed Cross Addition of Terminal Alkynes to Aryl Ynamides: An Unusual trans-Hydroalkynylation Reaction. Adv. Synth. Catal. 2014, 356, 3314–3318. DOI: 10.1002/adsc.201400572
  4. (a) Guthertz, A.; Leutzsch, M.; Wolf, L. M.; Gupta, P.; Rummelt, S. M.; Goddard, R.; Farès, C.; Thiel, W.; Fürstner, A. Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes. J. Am. Chem. Soc. 2018, 140, 3156–3159. DOI: 10.1021/jacs.8b00665 (b) Rosca, D.-A.; Radkowski, K.; Wolf, L. M.; Wagh, M.; Goddard, R.; Thiel, W.; Fürstner, A. Ruthenium-Catalyzed Alkyne trans-Hydrometalation: Mechanistic Insights and Preparative Implications. J. Am. Chem. Soc. 2017, 139, 2443–2455. DOI: 10.1021/jacs.6b12517 (C) Trost, B. M.; Ball, Z. T. Alkyne Hydrosilylation Catalyzed by a Cationic Ruthenium Complex: Efficient and General Trans Addition. J. Am. Chem. Soc. 2005, 127, 17644–17655, DOI: 10.1021/ja0528580

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した…
  2. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例…
  3. ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー
  4. 【速報】ノーベル化学賞2013は「分子動力学シミュレーション」に…
  5. ゴジラ級のエルニーニョに…出会った!
  6. その反応を冠する者の名は
  7. 製品開発職を検討する上でおさえたい3つのポイント
  8. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 逆電子要請型DAでレポーター分子を導入する
  2. テトロドトキシン Tetrodotoxin
  3. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  4. 私がケムステスタッフになったワケ(3)
  5. 湿度によって色が変わる分子性多孔質結晶を発見
  6. 天然にある中間体から多様な医薬候補を創り出す
  7. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  8. 第26回「分子集合体の極限に迫る」矢貝史樹准教授
  9. エリック・ジェイコブセン Eric N. Jacobsen
  10. Grubbs第二世代触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年1月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP