[スポンサーリンク]

スポットライトリサーチ

触媒と光で脳内のアミロイドβを酸素化

[スポンサーリンク]

 

第330回のスポットライトリサーチは、東京大学大学院薬学系研究科 金井 求 研究室 博士課程3年 (論文発表当時) の 永島 臨 さんにお願いしました。

永島さんは アルツハイマー病に関連するタンパク質アミロイドβを酸素化することで脳内アミロイドβを減少させる、生体適合性の高い新規光触媒を開発し、その成果を Science Advances 誌に報告しました[1]。プレスリリースはこちら

Nagashima, N., Ozawa, S., Furuta, M., Oi, M., Hori, Y., Tomita, T., Sohma, Y.; Kanai, M.;
“Catalytic photooxygenation degrades brain Aβ in vivo”,
Science Advances2021, 7, eabc9750
DOI: 10.1126/sciadv.abc9750.

さらに当該論文の成果は、有機化学の注目論文をハイライトし紹介するレビュー誌 Synfacts にも取り上げられました。

Contributor(s): Trauner, D.; Ko, T., “A Blood-Brain Barrier Penetrant Photooxygenation Catalyst for Aβ Degradation” Synfacts, 2021, 17, 0697, DOI: 10.1055/s-0040-1719746.

アルツハイマー病の治療薬は4種類の対症療法薬と、アミロイドβに対する抗体医薬アデュカヌマブ (ADUHELM™) のみが 2021 年 7 月現在承認されています (関連記事: アルツハイマー病に対する抗体医薬が米国FDAで承認)。アミロイドβはアルツハイマー病の治療標的として最も注目されておりますが、それに対する抗体医薬はコストや有効性の観点から汎用性があるとは言えない状況です。金井研究室では以前より触媒を用いたアルツハイマー病治療法の開発に力を入れており、第 54 回のスポットライトリサーチでも取り上げさせていただきました。今回、さらに進化させた光触媒を用いた永島さんらの研究成果は、実用性の高い新たなアルツハイマー病治療法の創出に繋がることが期待されています。

永島さんの研究を指導された東京大学薬学系研究科 教授の 金井 求 先生から、彼の研究と人柄についてコメントをいただきました。

永島さんは、研究も運動も後輩指導もできる、話していて気持ちの良い学生でした。修士の時は、エピゲノムを動かす化学触媒の開発をおこなっていましたが、博士に進学するときに全合成がやりたいと自ら訴えてきて、反応開発を基盤にした全合成プロジェクトを始めました。しかし、うまく行く前に世界中から同じ標的天然物の短工程全合成が複数報告されてしまいました。悶々とした日々の中でD2になる前に、今からならば難しいテーマをやりきる時間がまだあるのでテーマを変えてくれと、また自分から言ってきて、そこから取り組んだテーマが今回紹介させていただいた研究につながりました。

難しいテーマに果敢に挑まれ、限られた時間で立派にやりきる、まさしく研究者の理想像ですね!
それでは、インタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

アルツハイマー病は認知機能の低下を主症状とする疾患で、現在大きな社会問題となっています。アルツハイマー病の発症は、アミロイドβ (Aβ) というペプチドの凝集が神経細胞を傷つけることに由来する、とするアミロイドβ仮説が一つの説として唱えられています。金井研究室ではこれまでに光照射下で触媒を作用させてAβを酸素化させ、それによってAβの凝集性や毒性が低減されることが見出していました。しかしそれら触媒の血液脳関門 (BBB) 透過性の低さから、静脈内投与を介した治療への応用に向けては課題を残していました。

今回我々は、BBB 透過可能な屈曲型光酸素化触媒を開発しました (後述)。本触媒を静脈内投与した後に体外から光照射を行うことで、アルツハイマー病モデルマウス脳内のAβを酸素化させることができました。更に脳内のAβ蓄積を抑制し、新たなアルツハイマー病治療法創出の可能性を示せました。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

光酸素化触媒を生体内反応へと適用するためには、

(1) 高い Aβ 選択性

(2) 組織透過性の高い長波長光での励起

(3) 高い BBB 透過性

の三点全てを満たす必要性がありました。実際に現在までに研究室で開発された触媒 [2-3] は、電子ドナー・アクセプター間の結合回転によってAβへの選択性を発現しており、分子が巨大になり BBB 透過能も低くなっていました。

そこで私はコンパクトな分子ながらAβへの選択性を発現する分子としてアゾベンゼン―ボロンコンプレックス触媒を開発しました。本触媒は Aβ非存在下では光照射されても屈曲運動を起こすことで活性がオフになっており、Aβと結合することでその運動が阻害され活性がオンになり酸素化を進行させることができます。さらに、小さな構造ながらオレンジ色の長波長光を吸収することができ、(1)~(3) の全ての特性を満たすことができました。設計した通りに化合物にスイッチ ON/OFF 機構を持たせられ、さらに脳内で酸素化できるような分子になったときは気持ちよかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

やはり生体内での反応を達成するという部分が難しかったと思います。すでに研究室で作られた触媒もAβの選択性や長波長光の励起という観点では優れていたので、過去の触媒を超える分子を目指して、試行錯誤しながら様々な触媒を合成しました。上述した分子設計により生体内反応を達成しましたが、共同研究者の小澤くんとウエスタンブロッティングの結果を見た時には非常にうれしかったです。チャレンジングな研究テーマだったからこそ、大きくやりがいを感じることができました。

Q4. 将来は化学とどう関わっていきたいですか?

私が学部三年生だったときに、金井先生が研究室紹介で「生体内で起こっている一つ一つの現象は、細かく見たら全て化学反応です。化学者だからこそ貢献できる仕事があるはずで、化学のアプローチで生命科学や医療に貢献したい」とおっしゃっていて、非常に面白い考え方だと感じました。その考えには大学院を卒業し製薬会社に就職した現在も強く同意しています。

また、大学院での研究では AIE (凝集誘起発光) の性質を触媒のスイッチング設計に取り入れましたが、原子単位で分子を操って機能を発揮させられることも化学の面白さの一つだと思います。化学者として更に他分野を知り、取り入れ、分子を設計することで、科学全体を推し進められるような研究がしたいと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

普段何気なく過ごしていた研究室ですが、自分が成長する上で非常に整っていた環境だったと思っています。ですが、大学院で研究できる時間は限られています。私は研究室時代、自分の分野だけでなく有機化学全体を学ぶように努めてきましたが、数年ではとても時間が (努力も…) 足りなかったと思っています。その限られた研究室の時間を後悔無く過ごせるよう心より応援しております。

最後に、ご指導くださいました 金井 求 教授、相馬 洋平 講師 (現 和歌山県立医科大学薬学部 教授) に深く感謝いたします。また共同で研究・ディスカッションしてくださいました金井研の皆様、東大薬 富田研の皆様にも感謝申し上げます。

研究者の略歴

名前: 永島 臨 (Nozomu NAGASHIMA)

所属: 東京大学大学院薬学系研究科 金井研究室

研究テーマ: アルツハイマー病治療を志向した生体内アミロイドβ光酸素化触媒の開発

 

永島様、金井先生、ご協力いただきありがとうございました。
それでは、次回のスポットライトリサーチもお楽しみに!

参考文献

  1. Nagashima, N., Ozawa, S., Furuta, M., Oi, M., Hori, Y., Tomita, T., Sohma, Y.; Kanai, M.; “Catalytic photooxygenation degrades brain Aβ in vivo“, Science Advances2021, 7, eabc9750, DOI: 10.1126/sciadv.abc9750.
  2. Ni, J.; Taniguchi, A.; Ozawa, S.; Hori, Y.; Kuninobu,Y.; Saito, T.;  Saido, T.C.; Tomita, T.; Sohma, Y,: Kanai, M., “Near-Infrared Photoactivatable Oxygenation Catalysts of Amyloid Peptide” Chem, 2018, 4, 807–820. DOI: 10.1016/j.chempr.2018.02.008.
  3. Photo-oxygenation inhibits tau amyloid formation

金井研究室のスポットライトリサーチ

アミロイド認識で活性を示す光触媒の開発:アルツハイマー病の新しい治療法へ
トリプトファン選択的なタンパク質修飾反応の開発

関連記事

アルツハイマー病に対する抗体医薬が米国FDAで承認
アルツハイマー病患者の脳内から0価の鉄と銅が発見される

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 光学迷彩をまとう海洋生物―その仕組みに迫る
  2. 酵素の真実!?
  3. 狙いを定めて、炭素-フッ素結合の変換!~光触媒とスズの協働作用~…
  4. 効率的に新薬を生み出すLate-Stage誘導体化反応の開発
  5. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  6. Merck Compound Challengeに挑戦!【エント…
  7. 剛直な環状ペプチドを与える「オキサゾールグラフト法」
  8. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オープンアクセス論文が半数突破か
  2. MEDCHEM NEWS 31-3号「ケムステ代表寄稿記事」
  3. 自己治癒するセラミックス・金属ーその特性と応用|オンライン|
  4. カティヴァ 酢酸合成プロセス Cativa Process for Acetic Acid Synthesis
  5. 高知市で「化学界の権威」を紹介する展示が開催中
  6. メソポーラスシリカ(3)
  7. ネイティブ・ケミカル・ライゲーション Native Chemical Ligation (NCL)
  8. 優れた研究者は優れた指導者
  9. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  10. 量子力学が予言した化学反応理論を実験で証明する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP