[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解銅めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体配線やプリント基板の根幹を支える電解銅めっきを特集します。

電解銅めっき(画像:Wikipedia

銅は銀についで抵抗率が低く、比較的安価でそれなりに耐食性もある(表面は容易に酸化されますが)ことから、配線材料として広く用いられています。半導体向けには当初アルミニウムが用いられてきましたが、より電気抵抗が低く、エレクトロマイグレーション(EMを起こしにくい点、銀や金に比べて安価である点などから、現在では銅にとってかわられています。

plating

モバイル端末に欠かせない銅めっき(画像:Flickr

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。近年では特に半導体配線において極端な微細化が要求されており、めっきすべき部分のみを確実にめっきするための技術が必要とされています。

銅ダマシンめっき

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

とはいえ、銅を用いた配線技術の確立には並々ならぬ困難がありました。

めっきによる金属の析出は一般に、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいものです。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹のSEM画像(画像:Wikipedia

しかし凹部に金属を埋め込むダマシンにおいては逆に、凹部ほど速く析出させることが必要です。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

銅めっきの添加剤

現在広く用いれている銅めっき浴のうち最も代表的なものは硫酸銅(II)をベースとする硫酸銅浴ですが、これに添加されているのは主に以下の3種類です。

① ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③ レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴も均一電着性や残留応力特性に優れることから近年普及しています。この浴では②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

ほかにも、古典的には銅のシアン錯体を用いたシアン化銅浴などもあり、ストライクめっきなどに用いられています。

最近の動向

微細化の進展に伴い銅濃度の低減による析出精度の向上が模索されていますが、低濃度条件においてはめっき皮膜中にボイド(穴、間隙)が形成されやすいことが知られ、これが信頼性を維持する上で課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が急がれています。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。このような背景から近年では無電解銅めっきへの傾斜が進んでおり、電解銅めっきの役割は依然と比較すると小さなものとなりました。

しかし依然として電解銅めっき浴は組成が単純でコストが低く、めっき液の長期保管に伴う安定性が無電解めっき浴と比較して優れていることから、今後も工業上重要な技術であり続けるものと考えられます。

将来的なパラダイムシフトによって半導体内部の配線材料が銅からほかの金属へ移っていく可能性も刻々と高まってきてはいますが、それでもプリント基板用途では他の追随を許しておらず、完全に代替されるには至らないのではないでしょうか。

PCB

銅めっきをベースとして製造された基板(画像:Pixabay)

・・・

長くなりましたので今回はこのあたりで区切ります。次回は銅配線を保護する電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  2. 学生に化学論文の書き方をどうやって教えるか?
  3. 2009年人気記事ランキング
  4. 化学系研究室ホームページ作成ガイド
  5. SigmaAldrichフッ素化合物30%OFFキャンペーン
  6. 【東日本大震災より10年】有機合成系研究室における地震対策
  7. 「人工知能時代」と人間の仕事
  8. whileの使い方

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人に聞く
  2. コーリー・バクシ・柴田還元 Corey-Bakshi-Shibata (CBS) Reduction
  3. 内部アルケンのアリル位の選択的官能基化反応
  4. 酸化反応を駆使した(-)-deoxoapodineの世界最短合成
  5. 三洋化成の新分野への挑戦
  6. 微生物細胞に優しいバイオマス溶媒 –カルボン酸系双性イオン液体の開発–
  7. グルタミン酸 / Glutamic Acid
  8. 機能指向型合成 Function-Oriented Synthesis
  9. エリック・ソレンセン Eric J. Sorensen
  10. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
« 11月   1月 »
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜

岡山大学学術研究院自然科学学域(工)の渡邉貴一研究准教授と同大学院自然科学研究科博士前期課程の安原有…

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP