[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解銅めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体配線やプリント基板の根幹を支える電解銅めっきを特集します。

電解銅めっき(画像:Wikipedia

銅は銀についで抵抗率が低く、比較的安価でそれなりに耐食性もある(表面は容易に酸化されますが)ことから、配線材料として広く用いられています。半導体向けには当初アルミニウムが用いられてきましたが、より電気抵抗が低く、エレクトロマイグレーション(EMを起こしにくい点、銀や金に比べて安価である点などから、現在では銅にとってかわられています。

plating

モバイル端末に欠かせない銅めっき(画像:Flickr

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。近年では特に半導体配線において極端な微細化が要求されており、めっきすべき部分のみを確実にめっきするための技術が必要とされています。

銅ダマシンめっき

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

とはいえ、銅を用いた配線技術の確立には並々ならぬ困難がありました。

めっきによる金属の析出は一般に、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいものです。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹のSEM画像(画像:Wikipedia

しかし凹部に金属を埋め込むダマシンにおいては逆に、凹部ほど速く析出させることが必要です。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

銅めっきの添加剤

現在広く用いれている銅めっき浴のうち最も代表的なものは硫酸銅(II)をベースとする硫酸銅浴ですが、これに添加されているのは主に以下の3種類です。

① ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③ レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴も均一電着性や残留応力特性に優れることから近年普及しています。この浴では②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

ほかにも、古典的には銅のシアン錯体を用いたシアン化銅浴などもあり、ストライクめっきなどに用いられています。

最近の動向

微細化の進展に伴い銅濃度の低減による析出精度の向上が模索されていますが、低濃度条件においてはめっき皮膜中にボイド(穴、間隙)が形成されやすいことが知られ、これが信頼性を維持する上で課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が急がれています。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。このような背景から近年では無電解銅めっきへの傾斜が進んでおり、電解銅めっきの役割は依然と比較すると小さなものとなりました。

しかし依然として電解銅めっき浴は組成が単純でコストが低く、めっき液の長期保管に伴う安定性が無電解めっき浴と比較して優れていることから、今後も工業上重要な技術であり続けるものと考えられます。

将来的なパラダイムシフトによって半導体内部の配線材料が銅からほかの金属へ移っていく可能性も刻々と高まってきてはいますが、それでもプリント基板用途では他の追随を許しておらず、完全に代替されるには至らないのではないでしょうか。

PCB

銅めっきをベースとして製造された基板(画像:Pixabay)

・・・

長くなりましたので今回はこのあたりで区切ります。次回は銅配線を保護する電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 湿度変化で発電する
  2. 【マイクロ波化学(株)環境/化学分野向けウェビナー】 #CO2削…
  3. カルボン酸に気をつけろ! グルクロン酸抱合の驚異
  4. 化学系面白サイトでちょっと一息つきましょう
  5. 第五回ケムステVシンポジウム「最先端ケムバイオ」開催報告
  6. 目指せ!フェロモンでリア充生活
  7. ケムステVシンポまとめ
  8. ケムステタイムトラベル2011~忘れてはならない事~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 富士フイルム、英社を245億円で買収 産業用の印刷事業拡大
  2. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  3. 【Spiber】新卒・中途採用情報
  4. 創発型研究のススメー日本化学会「化学と工業:論説」より
  5. 第七回ケムステVプレミアレクチャー「触媒との『掛け算』で研究者を育て、組織を面白く、強くする」
  6. 反応経路自動探索が見いだした新規3成分複素環構築法
  7. 求電子的インドール:極性転換を利用したインドールの新たな反応性!
  8. 第99回―「配位子設計にもとづく研究・超分子化学」Paul Plieger教授
  9. 前田 浩 Hiroshi Maeda
  10. ラッセル・コックス Rusesl J. Cox

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP