[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解銅めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体配線やプリント基板の根幹を支える電解銅めっきを特集します。

電解銅めっき(画像:Wikipedia

銅は銀についで抵抗率が低く、比較的安価でそれなりに耐食性もある(表面は容易に酸化されますが)ことから、配線材料として広く用いられています。半導体向けには当初アルミニウムが用いられてきましたが、より電気抵抗が低く、エレクトロマイグレーション(EMを起こしにくい点、銀や金に比べて安価である点などから、現在では銅にとってかわられています。

plating

モバイル端末に欠かせない銅めっき(画像:Flickr

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。近年では特に半導体配線において極端な微細化が要求されており、めっきすべき部分のみを確実にめっきするための技術が必要とされています。

銅ダマシンめっき

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

とはいえ、銅を用いた配線技術の確立には並々ならぬ困難がありました。

めっきによる金属の析出は一般に、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいものです。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹のSEM画像(画像:Wikipedia

しかし凹部に金属を埋め込むダマシンにおいては逆に、凹部ほど速く析出させることが必要です。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

銅めっきの添加剤

現在広く用いれている銅めっき浴のうち最も代表的なものは硫酸銅(II)をベースとする硫酸銅浴ですが、これに添加されているのは主に以下の3種類です。

① ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③ レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴も均一電着性や残留応力特性に優れることから近年普及しています。この浴では②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

ほかにも、古典的には銅のシアン錯体を用いたシアン化銅浴などもあり、ストライクめっきなどに用いられています。

最近の動向

微細化の進展に伴い銅濃度の低減による析出精度の向上が模索されていますが、低濃度条件においてはめっき皮膜中にボイド(穴、間隙)が形成されやすいことが知られ、これが信頼性を維持する上で課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が急がれています。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。このような背景から近年では無電解銅めっきへの傾斜が進んでおり、電解銅めっきの役割は依然と比較すると小さなものとなりました。

しかし依然として電解銅めっき浴は組成が単純でコストが低く、めっき液の長期保管に伴う安定性が無電解めっき浴と比較して優れていることから、今後も工業上重要な技術であり続けるものと考えられます。

将来的なパラダイムシフトによって半導体内部の配線材料が銅からほかの金属へ移っていく可能性も刻々と高まってきてはいますが、それでもプリント基板用途では他の追随を許しておらず、完全に代替されるには至らないのではないでしょうか。

PCB

銅めっきをベースとして製造された基板(画像:Pixabay)

・・・

長くなりましたので今回はこのあたりで区切ります。次回は銅配線を保護する電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 究極の脱水溶媒 Super2(スーパー スクエア):関東化学
  2. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻…
  3. 病理学的知見にもとづく化学物質の有害性評価
  4. カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路
  5. ナノ孔に吸い込まれていく分子の様子をスナップショット撮影!
  6. 学生はなんのために研究するのか? 研究でスキルアップもしませんか…
  7. 有機合成化学協会誌2022年2月号:有機触媒・ルイス酸触媒・近赤…
  8. 2017年(第33回)日本国際賞受賞者 講演会

注目情報

ピックアップ記事

  1. Carl Boschの人生 その1
  2. 1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリニウムクロリド:1,3-Bis(2,4,6-trimethylphenyl)imidazolinium Chloride
  3. ノーベル化学賞受賞者が講演 3月1日、徳島文理大学
  4. マンガでわかる かずのすけ式美肌化学のルール
  5. キラルアニオン相間移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  6. 究極の二量体合成を追い求めて~抗生物質BE-43472Bの全合成
  7. リンダウ会議に行ってきた④
  8. ビアリールのアリール交換なんてアリエルの!?
  9. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素
  10. 『分子標的』に期待

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP