[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解銅めっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は半導体配線やプリント基板の根幹を支える電解銅めっきを特集します。

電解銅めっき(画像:Wikipedia

銅は銀についで抵抗率が低く、比較的安価でそれなりに耐食性もある(表面は容易に酸化されますが)ことから、配線材料として広く用いられています。半導体向けには当初アルミニウムが用いられてきましたが、より電気抵抗が低く、エレクトロマイグレーション(EMを起こしにくい点、銀や金に比べて安価である点などから、現在では銅にとってかわられています。

plating

モバイル端末に欠かせない銅めっき(画像:Flickr

しかしながら、銅はAlとは異なり、プラズマエッチングによるパターニングが難しく、これが実用化の障壁となっていました。近年では特に半導体配線において極端な微細化が要求されており、めっきすべき部分のみを確実にめっきするための技術が必要とされています。

銅ダマシンめっき

その打開のために発展したのが、ダマシンと呼ばれるめっき技術です。

ダマシンとはまたの名を象嵌といい、溝や穴などの微細な凹部を埋めるようにめっきする手法です。シリアの首都、ダマスカスにおける工芸品の製造プロセスによく似ていることにちなんで命名されたといわれます。

とはいえ、銅を用いた配線技術の確立には並々ならぬ困難がありました。

めっきによる金属の析出は一般に、反応種の金属イオンが拡散で到達しやすい電極の凸部ほど起こりやすいものです。極端な例としては、樹枝状に析出した金属樹が挙げられます。

銅樹のSEM画像(画像:Wikipedia

しかし凹部に金属を埋め込むダマシンにおいては逆に、凹部ほど速く析出させることが必要です。この析出の制御を可能とするのが、めっき浴に微量加えられる添加剤です。基本的には微細な空孔に入り込みやすい低分子の添加剤が析出促進を、入りにくい大きな分子が阻害を担うことによって凹凸を埋めるように析出が進行します。

銅めっきの添加剤

現在広く用いれている銅めっき浴のうち最も代表的なものは硫酸銅(II)をベースとする硫酸銅浴ですが、これに添加されているのは主に以下の3種類です。

① ノニオン系界面活性剤:Cl存在下で中間体のCu+を捕捉して電極上に単分子吸着し、析出を阻害する。

ex) PEGなど

光沢剤:結晶核の成長点に吸着することで大きな結晶が成長するのを阻害し、新たな結晶核の発生を促進する。さらに、めっき皮膜中に取り込まれずに残存することで、表面積が漸減する凹部に集中して水素の吸着を阻害することで、結果的に凹部での析出を促進する。

ex) bis (3-sulfopropyl)disulfidedisodium(SPSなどの有機硫黄化合物

③ レベラー:電極への吸着が拡散律速であるため凸部に選択的に吸着し、析出を阻害する。

ex) ヤヌスグリーンB (JGB)など

このほか、ピロリン酸銅(II)をベースとするピロリン酸銅浴も均一電着性や残留応力特性に優れることから近年普及しています。この浴では②のSPSの代わりにジメルカプトチアジアゾール(DMTDなどが供されています。

ほかにも、古典的には銅のシアン錯体を用いたシアン化銅浴などもあり、ストライクめっきなどに用いられています。

最近の動向

微細化の進展に伴い銅濃度の低減による析出精度の向上が模索されていますが、低濃度条件においてはめっき皮膜中にボイド(穴、間隙)が形成されやすいことが知られ、これが信頼性を維持する上で課題となっています。ボイドは皮膜に共析したPEGが原因となっていることも多く、その克服が急がれています。

また、半導体配線は絶縁体のSiO2膜などの上に形成することから、全工程を無電解めっきのみで完結させることができれば最も合理的です。このような背景から近年では無電解銅めっきへの傾斜が進んでおり、電解銅めっきの役割は依然と比較すると小さなものとなりました。

しかし依然として電解銅めっき浴は組成が単純でコストが低く、めっき液の長期保管に伴う安定性が無電解めっき浴と比較して優れていることから、今後も工業上重要な技術であり続けるものと考えられます。

将来的なパラダイムシフトによって半導体内部の配線材料が銅からほかの金属へ移っていく可能性も刻々と高まってきてはいますが、それでもプリント基板用途では他の追随を許しておらず、完全に代替されるには至らないのではないでしょうか。

PCB

銅めっきをベースとして製造された基板(画像:Pixabay)

・・・

長くなりましたので今回はこのあたりで区切ります。次回は銅配線を保護する電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. アンモニアを室温以下で分解できる触媒について
  2. 有機合成化学協会誌2022年10月号:トリフルオロメチル基・気体…
  3. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  4. ポンコツ博士の海外奮闘録④ ~博士,ろ過マトる~
  5. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  6. 洗浄ブラシを30種類試してみた
  7. THE PHD MOVIE
  8. 2011年ノーベル化学賞予想ーケムステ版

注目情報

ピックアップ記事

  1. 電子ノートか紙のノートか
  2. ハイフン(-)の使い方
  3. 複雑にインターロックした自己集合体の形成機構の解明
  4. 理研も一般公開するよ!!
  5. ジョアン・スタビー JoAnne Stubbe
  6. [6π]光環化 [6π]Photocyclization
  7. 化学者ネットワーク
  8. 第29回 ケムステVシンポ「論文を書こう!そして…」を開催します
  9. 遺伝子工学ーゲノム編集と最新技術ーChemical Times特集より
  10. 秋の味覚「ぎんなん」に含まれる化合物

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP