[スポンサーリンク]

N

ニトロキシルラジカル酸化触媒 Nitroxylradical Oxidation Catalyst

概要

アルキル置換型ヒドロキシルアミンは空気下に容易に酸化を受ける。このときアミンα位炭素にプロトンが結合していると脱離してニトロンを生成するが、4置換炭素であったりanti-Bredt型のためプロトン脱離しにくい構造を取る骨格の場合は、ニトロキシルラジカルとして安定に存在しうる。これらはアルコールをカルボニルへと変換する穏和な酸化触媒として応用できる。

かねてよりTEMPOが酸化触媒として広く活用されてきたが、活性中心周りの立体障害を小さくしたAZADOシリーズが高活性酸化触媒になることが岩淵らによって示され、より広汎な基質へと応用可能になった。TEMPO酸化については別項を参照されたい。

また近年では銅もしくは鉄触媒との組み合わせによって高化学選択的な酸素酸化が行えることが示されている。こちらも別項を参照されたい。

基本文献

<AZADO & Me-AZADO>

  • Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412. DOI: 10.1021/ja0620336

<ABNO>

  • Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 4619. DOI: 10.1021/jo900486w

<keto-ABNO>

<nor-AZADO>

  • Hayashi, M.; Sasano, Y.; Nagawsawa, S.; Shibuya, M.; Iwabuchi, Y. Chem. Pharm. Bull. 2011, 59, 1570. doi:10.1248/cpb.59.1570

<review>

 

反応機構

触媒サイクルの基本的な考え方はTEMPO酸化を参照。

各々のニトロキシルラジカルは、構造および置換基の違いによって酸化還元電位を大きく変える事ができる。このため構造チューニングによって酸化活性を調節することが可能となる。(参考:Tetrahedron Lett. 201253, 2070.)

N_oxylradical_10

(画像:ACS Catal. 20133, 2612. より引用)

反応例

立体的に混み合ったアルコールの酸化[1]

N_oxylradical_3

亜塩素酸を共酸化剤として用いることでカルボン酸まで一段階で酸化可能。[2]

N_oxylradical_4
NOx共存下に酸素酸化を行うことも可能。[3]

N_oxylradical_5

触媒にキラリティを持たせることによって速度論的光学分割酸化が行える。[4]

N_oxylradical_2

フルオロアルコールの穏和な酸素酸化[5]

N_oxylradical_6

Taiwaniadductsの全合成[6]

N_oxylradical_7

Sphingofungin Eの合成[7]:シアノヒドリン経由で酸化することで困難な位置の酸化を達成している。

N_oxylradical_8

(-)-acetylaranotinの合成[8]

N_oxylradical_9

参考文献

  1. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412. DOI: 10.1021/ja0620336
  2. Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun. 2009, 1739. DOI: 10.1039/B822944A
  3. (a) Shibuya, M.; Osada, Y.; Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 1336497. doi:10.1021/ja110940c (b) Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004, 126, 4112. DOI: 10.1021/ja031765k (c) Lauber, M. B.; Stahl, S. S. ACS Catal. 20133, 2612. DOI: 10.1021/cs400746m
  4. Murakami, K.; Sasano, Y.; Tomizawa, M.; Shibuya, M.; Kwon, E.; Iwabuchi, Y. J. Am. Chem. Soc. 2014, 13617591. DOI: 10.1021/ja509766f
  5. Kadoh, Y.; Tashiro, M.; Oisaki, K.; Kanai, M. Adv. Synth. Catal. 2015, DOI: 10.1002/adsc.201500131
  6. Deng, J.; Zhou, S.; Zhang, W.l Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185. DOI: 10.1021/ja503972p
  7. Ikeuchi, K.; Hayashi, M.; Yamamoto, T.; Inai, M.; Asakawa, T.; Hamashima, Y.; Kan, T. Eur. J. Org. Chem. 201330, 6789. DOI: 10.1002/ejoc.201301065
  8. Fujiwara, H.; Kurogi, T.; Okaya, S.; Okano, K.; Tokuyama, H. Angew. Chem. Int. Ed. 2012, 51, 13062. DOI: 10.1002/anie.201207307

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マルコフニコフ則 Markovnikov’s Rul…
  2. クロム(η6-アレーン)カルボニル錯体 Cr(η6-arene)…
  3. バルツ・シーマン反応 Balz-Schiemann Reacti…
  4. エノラートのα-アルキル化反応 α-Alkylation of …
  5. アルブライト・ゴールドマン酸化 Albright-Goldman…
  6. ライセルト インドール合成 Reissert Indole Sy…
  7. ブレデレック イミダゾール合成 Bredereck Imidaz…
  8. 有機リチウム試薬 Organolithium Reagents

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  2. ハニートラップに対抗する薬が発見される?
  3. グルタミン酸 / Glutamic Acid
  4. 複雑なアルカロイド合成
  5. 日本触媒で爆発事故
  6. 有機薄膜太陽電池の”最新”開発動向
  7. 顕微鏡で化学反応を見る!?
  8. はてブ週間ランキング第四位を獲得
  9. 化学産業を担う人々のための実践的研究開発と企業戦略
  10. ヒュスゲン環化付加 Huisgen Cycloaddition

関連商品

注目情報

注目情報

最新記事

「生合成に基づいた網羅的な天然物全合成」—カリフォルニア大学バークレー校・Sarpong研より

「ケムステ海外研究記」の第19回目は、向井健さんにお願いしました。向井さんはカリフォルニア大…

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

研究職の転職で求められる「面白い人材」

ある外資系機器メーカーのフィールドサービス職のポジションに対して候補者をご推薦しました。その時のエピ…

Chem-Station Twitter

PAGE TOP