[スポンサーリンク]

N

ニトロキシルラジカル酸化触媒 Nitroxylradical Oxidation Catalyst

[スポンサーリンク]

概要

アルキル置換型ヒドロキシルアミンは空気下に容易に酸化を受ける。このときアミンα位炭素にプロトンが結合していると脱離してニトロンを生成するが、4置換炭素であったりanti-Bredt型のためプロトン脱離しにくい構造を取る骨格の場合は、ニトロキシルラジカルとして安定に存在しうる。これらはアルコールをカルボニルへと変換する穏和な酸化触媒として応用できる。

かねてよりTEMPOが酸化触媒として広く活用されてきたが、活性中心周りの立体障害を小さくしたAZADOシリーズが高活性酸化触媒になることが岩淵らによって示され、より広汎な基質へと応用可能になった。TEMPO酸化については別項を参照されたい。

また近年では銅もしくは鉄触媒との組み合わせによって高化学選択的な酸素酸化が行えることが示されている。こちらも別項を参照されたい。

基本文献

<AZADO & Me-AZADO>

  • Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412. DOI: 10.1021/ja0620336

<ABNO>

  • Shibuya, M.; Tomizawa, M.; Sasano, Y.; Iwabuchi, Y. J. Org. Chem. 2009, 74, 4619. DOI: 10.1021/jo900486w

<keto-ABNO>

<nor-AZADO>

  • Hayashi, M.; Sasano, Y.; Nagawsawa, S.; Shibuya, M.; Iwabuchi, Y. Chem. Pharm. Bull. 2011, 59, 1570. doi:10.1248/cpb.59.1570

<review>

 

反応機構

触媒サイクルの基本的な考え方はTEMPO酸化を参照。

各々のニトロキシルラジカルは、構造および置換基の違いによって酸化還元電位を大きく変える事ができる。このため構造チューニングによって酸化活性を調節することが可能となる。(参考:Tetrahedron Lett. 201253, 2070.)

N_oxylradical_10

(画像:ACS Catal. 20133, 2612. より引用)

反応例

立体的に混み合ったアルコールの酸化[1]

N_oxylradical_3

亜塩素酸を共酸化剤として用いることでカルボン酸まで一段階で酸化可能。[2]

N_oxylradical_4
NOx共存下に酸素酸化を行うことも可能。[3]

N_oxylradical_5

触媒にキラリティを持たせることによって速度論的光学分割酸化が行える。[4]

N_oxylradical_2

フルオロアルコールの穏和な酸素酸化[5]

N_oxylradical_6

Taiwaniadductsの全合成[6]

N_oxylradical_7

Sphingofungin Eの合成[7]:シアノヒドリン経由で酸化することで困難な位置の酸化を達成している。

N_oxylradical_8

(-)-acetylaranotinの合成[8]

N_oxylradical_9

参考文献

  1. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412. DOI: 10.1021/ja0620336
  2. Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. Chem. Commun. 2009, 1739. DOI: 10.1039/B822944A
  3. (a) Shibuya, M.; Osada, Y.; Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 1336497. doi:10.1021/ja110940c (b) Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004, 126, 4112. DOI: 10.1021/ja031765k (c) Lauber, M. B.; Stahl, S. S. ACS Catal. 20133, 2612. DOI: 10.1021/cs400746m
  4. Murakami, K.; Sasano, Y.; Tomizawa, M.; Shibuya, M.; Kwon, E.; Iwabuchi, Y. J. Am. Chem. Soc. 2014, 13617591. DOI: 10.1021/ja509766f
  5. Kadoh, Y.; Tashiro, M.; Oisaki, K.; Kanai, M. Adv. Synth. Catal. 2015, DOI: 10.1002/adsc.201500131
  6. Deng, J.; Zhou, S.; Zhang, W.l Li, J.; Li, R.; Li, A. J. Am. Chem. Soc. 2014, 136, 8185. DOI: 10.1021/ja503972p
  7. Ikeuchi, K.; Hayashi, M.; Yamamoto, T.; Inai, M.; Asakawa, T.; Hamashima, Y.; Kan, T. Eur. J. Org. Chem. 201330, 6789. DOI: 10.1002/ejoc.201301065
  8. Fujiwara, H.; Kurogi, T.; Okaya, S.; Okano, K.; Tokuyama, H. Angew. Chem. Int. Ed. 2012, 51, 13062. DOI: 10.1002/anie.201207307

関連書籍

[amazonjs asin=”0198556640″ locale=”JP” title=”Oxidation and Reduction in Organic Synthesis (Oxford Chemistry Primers, 6)”][amazonjs asin=”3527323201″ locale=”JP” title=”Modern Oxidation Methods”][amazonjs asin=”1441936424″ locale=”JP” title=”Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice (Basic Reactions in Organic Synthesis)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. カラッシュ・ソスノフスキ-酸化 Kharasch-Sosnovs…
  2. マルコフニコフ則 Markovnikov’s Rul…
  3. ビナミジニウム塩 Vinamidinium Salt
  4. バールエンガ試薬 Barluenga’s Reage…
  5. ピナー ピリミジン合成 Pinner Pyrimidine Sy…
  6. ミッドランド還元 Midland Reduction
  7. クラウソン=カース ピロール合成 Clauson-Kaas Py…
  8. 辻・ウィルキンソン 脱カルボニル化反応 Tsuji-Wilkin…

注目情報

ピックアップ記事

  1. 付設展示会に行こう!ー和光純薬編ー
  2. 野依賞―受賞者一覧
  3. ジョアンナ・アイゼンバーグ Joanna Aizenberg
  4. リロイ・フッド Leroy E. Hood
  5. ブドウ糖で聴くウォークマン? バイオ電池をソニーが開発
  6. カーボンナノペーパー開発 信州大、ナノテク新素材
  7. おまえら英語よりもタイピングやろうぜ ~上級編~
  8. ニューマン・クワート転位 Newman-Kwart Rearrangement
  9. ヴィルスマイヤー・ハック反応 Vilsmeier-Haack Reaction
  10. ハリー・グレイ Harry B. Gray

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP