[スポンサーリンク]

O

有機テルル媒介リビングラジカル重合 Organotellurium-mediated Living Radical Polymerization (TERP)

[スポンサーリンク]

概要

TERP (Organotellurium-Mediated Living Radical Polymerization)は、可逆的不活性化ラジカル重合(≒リビングラジカル重合)の一種である。

ラジカル重合ではラジカル末端の再結合や、水素引き抜きによる不均化が停止反応として存在する為、生成ポリマーの分子量の制御が困難である。TERPでは、有機テルル化合物を連鎖移動剤かつラジカル開始剤として用いる事で、全てのポリマー鎖に均等に生長の機会が訪れる低い活性種濃度での重合を可能にし、精密重合を実現した。

NMP、ATRP RAFT等に続く新たな可逆的不活性化ラジカル重合系であり、それぞれの系と比べても、1種類の連鎖移動剤で幅広い多官能性ビニルモノマーの重合を制御出来る汎用性やブロック共重合体の合成能などが優れている1

それらの特性から、大塚化学(株)にて工業化されている。

基本文献

  1. Yamago, S. Chem. Rev. 2009, 109, 5051–5068. DOI:10.1021/cr9001269
 (Review)
  2. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874-2875.DOI:10.1021/ja025554b

反応機構

図1. TERPの重合機構 (a) とRAFT重合、TERPの交換連鎖機構におけるエネルギー図 (b)。図中PはPolymer, MはMonomerを表す。

 

有機テルル化合物から炭素ラジカルが生成する可逆的開裂機構と、生成した炭素ラジカルがもう1つ別の有機テルル化合物と反応する交換連鎖機構の2つの活性化機構が存在する。基本的に可逆的開裂機構は開始反応にのみ使われて、重合中は交換連鎖機構が進行する。低い活性種濃度での重合が可能であり、停止反応を極力抑えることができる。交換連鎖機構により重合を制御する点はRAFT重合と似ているが、その機構自身は熱力学的に別物であり、TERPでは交換連鎖反応時、実質的に中間体が存在しない。

反応例

反応形式により、第1世代、第2世代、第3世代に分けられる。

第1世代

有機テルル化合物の熱分解をラジカル発生源にする。そのため、80~110 ˚Cの高温条件が必要になる。

Styreneの重合。窒素雰囲気下、モノマーとAIBN、有機テルル化合物を混ぜて、温度を105 ˚Cまで上げることで有機テルル化合物が分解、ラジカルを発生し重合が進む2

第2世代

ラジカル開始剤、特にアゾ開始剤の熱分解をラジカル発生源にする。有機テルル化合物は連鎖移動剤としてのみ使用。第1世代よりも低温(40~80 ˚C)での反応が可能である。

Styreneの重合。窒素雰囲気下、モノマーとAIBN、有機テルル化合物を混ぜて、温度を60 ˚Cまで上げることでAIBNが分解、ラジカルを発生し重合が進む3

第3世代

有機テルル化合物の光分解をラジカル発生源にする。低温(0 ˚C~室温)でも重合可能。光の照射により重合のON/OFFをコントロールできる。

N-isopropyl acrylamide (NIPAM)の光重合。窒素雰囲気下、モノマーと有機テルル化合物を溶媒に溶かし、光を照射することで有機テルル化合物が分解、ラジカルを発生し重合が進む4

実験手順

 

実験のコツ・テクニック

  • 有機テルル化合物は酸素存在下不安定であるため、十分に脱気、窒素置換して反応を行うとよい。

備考

  • 有機テルル化合物は主に下記の反応、減圧蒸留による精製により、gスケールで合成できる。

  • ジテルリドを助触媒として加えることで重合の制御が向上する5
  • 同じ機構の重合系として、有機アンチモン化合物を用いるOrganostibine-mediated Living Radical Polymerization (SBRP)7や有機ビスマス化合物を用いるOrganobismuthine-mediated Living Radical Polymerization (BIRP)6などが報告されている。
  • 優れた重合系ではあるものの、開始剤や連鎖移動剤があまり市販されていない為、重合条件検討のファーストチョイスにはし辛い。

参考文献

  1. Yamago, S. Chem. Rev. 2009, 109, 5051–5068. DOI:10.1021/cr9001269
  2. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874-2875.DOI:10.1021/ja025554b
  3. Goto, A.; Kwak, Y.; Fukuda, T.; Yamago, S.; Iida, K.; Nakajima, M.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 8720-8721. DOI:10.1021/ja035464m
  4. Yamago, S.; Ukai, Y.; Matsumoto, A.; Nakamura, Y. J. Am. Chem. Soc. 2009, 131, 2100-2101. DOI:10.1021/ja8099689
  5. Kwak, Y.; Tezuka, M.; Goto, A.; Fukuda, T.; Yamago, S.; Macromolecules 2007, 40,1881-1885. DOI:10.1021/ma0623385
  6. Yamago, S.; Kayahara, E.; Kotani, M.; Ray, B.; Kwak, Y.; Goto, A.; Fukuda, T. Angew. Chem. Int. Ed. 2007, 46, 1304 –1306. DOI: 10.1002/anie.200604473
  7. Yamago, S.; Ray, B.; Iida, K.; Yoshida, J.; Tada, T.; Yoshizaki, K.; Kwak, Y.; Goto, A.; Fukuda, T. J. Am. Chem. Soc. 2004,126, 13908-13909. DOI:10.1021/ja044787v

関連反応

関連書籍

[amazonjs asin=”B000WM9FRA” locale=”JP” title=”Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition (Best Synthetic Methods) (English Edition)”]

外部リンク

Avatar photo

Maitotoxin

投稿者の記事一覧

学生。高分子合成専門。低分子・高分子を問わず、分子レベルでの創作が好きです。構造が格好よければ全て良し。生物学的・材料学的応用に繋がれば尚良し。Maitotoxinの全合成を待ち望んでいます。

関連記事

  1. スティーヴンス転位 Stevens Rearrangement
  2. ウーリンス試薬 Woollins’ Reagent
  3. オキシ水銀化・脱水銀化 Oxymercuration-Demer…
  4. 光延反応 Mitsunobu Reaction
  5. 辻・ウィルキンソン 脱カルボニル化反応 Tsuji-Wilkin…
  6. コルベ・シュミット反応 Kolbe-Schmitt Reacti…
  7. ジェイコブセン・香月エポキシ化反応 Jacobsen-Katsu…
  8. デ-マヨ反応 de Mayo Reaction

注目情報

ピックアップ記事

  1. 有機化学クロスワードパズル
  2. アジドの3つの窒素原子をすべて入れる
  3. 第69回―「炭素蒸気に存在する化学種の研究」Harold Kroto教授
  4. 生涯最高の失敗
  5. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  6. 給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~
  7. 生命が居住できる星の条件
  8. 第5回ICReDD国際シンポジウム開催のお知らせ
  9. メーヤワイン・ポンドルフ・ヴァーレイ還元 Meerwein-Ponndorf-Verley (MPV) Reduction
  10. 有機合成化学協会誌2019年11月号:英文版特集号

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP