[スポンサーリンク]

O

有機テルル媒介リビングラジカル重合 Organotellurium-mediated Living Radical Polymerization (TERP)

[スポンサーリンク]

概要

TERP (Organotellurium-Mediated Living Radical Polymerization)は、可逆的不活性化ラジカル重合(≒リビングラジカル重合)の一種である。

ラジカル重合ではラジカル末端の再結合や、水素引き抜きによる不均化が停止反応として存在する為、生成ポリマーの分子量の制御が困難である。TERPでは、有機テルル化合物を連鎖移動剤かつラジカル開始剤として用いる事で、全てのポリマー鎖に均等に生長の機会が訪れる低い活性種濃度での重合を可能にし、精密重合を実現した。

NMP、ATRP RAFT等に続く新たな可逆的不活性化ラジカル重合系であり、それぞれの系と比べても、1種類の連鎖移動剤で幅広い多官能性ビニルモノマーの重合を制御出来る汎用性やブロック共重合体の合成能などが優れている1

それらの特性から、大塚化学(株)にて工業化されている。

基本文献

  1. Yamago, S. Chem. Rev. 2009, 109, 5051–5068. DOI:10.1021/cr9001269
 (Review)
  2. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874-2875.DOI:10.1021/ja025554b

反応機構

図1. TERPの重合機構 (a) とRAFT重合、TERPの交換連鎖機構におけるエネルギー図 (b)。図中PはPolymer, MはMonomerを表す。

 

有機テルル化合物から炭素ラジカルが生成する可逆的開裂機構と、生成した炭素ラジカルがもう1つ別の有機テルル化合物と反応する交換連鎖機構の2つの活性化機構が存在する。基本的に可逆的開裂機構は開始反応にのみ使われて、重合中は交換連鎖機構が進行する。低い活性種濃度での重合が可能であり、停止反応を極力抑えることができる。交換連鎖機構により重合を制御する点はRAFT重合と似ているが、その機構自身は熱力学的に別物であり、TERPでは交換連鎖反応時、実質的に中間体が存在しない。

反応例

反応形式により、第1世代、第2世代、第3世代に分けられる。

第1世代

有機テルル化合物の熱分解をラジカル発生源にする。そのため、80~110 ˚Cの高温条件が必要になる。

Styreneの重合。窒素雰囲気下、モノマーとAIBN、有機テルル化合物を混ぜて、温度を105 ˚Cまで上げることで有機テルル化合物が分解、ラジカルを発生し重合が進む2

第2世代

ラジカル開始剤、特にアゾ開始剤の熱分解をラジカル発生源にする。有機テルル化合物は連鎖移動剤としてのみ使用。第1世代よりも低温(40~80 ˚C)での反応が可能である。

Styreneの重合。窒素雰囲気下、モノマーとAIBN、有機テルル化合物を混ぜて、温度を60 ˚Cまで上げることでAIBNが分解、ラジカルを発生し重合が進む3

第3世代

有機テルル化合物の光分解をラジカル発生源にする。低温(0 ˚C~室温)でも重合可能。光の照射により重合のON/OFFをコントロールできる。

N-isopropyl acrylamide (NIPAM)の光重合。窒素雰囲気下、モノマーと有機テルル化合物を溶媒に溶かし、光を照射することで有機テルル化合物が分解、ラジカルを発生し重合が進む4

実験手順

 

実験のコツ・テクニック

  • 有機テルル化合物は酸素存在下不安定であるため、十分に脱気、窒素置換して反応を行うとよい。

備考

  • 有機テルル化合物は主に下記の反応、減圧蒸留による精製により、gスケールで合成できる。

  • ジテルリドを助触媒として加えることで重合の制御が向上する5
  • 同じ機構の重合系として、有機アンチモン化合物を用いるOrganostibine-mediated Living Radical Polymerization (SBRP)7や有機ビスマス化合物を用いるOrganobismuthine-mediated Living Radical Polymerization (BIRP)6などが報告されている。
  • 優れた重合系ではあるものの、開始剤や連鎖移動剤があまり市販されていない為、重合条件検討のファーストチョイスにはし辛い。

参考文献

  1. Yamago, S. Chem. Rev. 2009, 109, 5051–5068. DOI:10.1021/cr9001269
  2. Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874-2875.DOI:10.1021/ja025554b
  3. Goto, A.; Kwak, Y.; Fukuda, T.; Yamago, S.; Iida, K.; Nakajima, M.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 8720-8721. DOI:10.1021/ja035464m
  4. Yamago, S.; Ukai, Y.; Matsumoto, A.; Nakamura, Y. J. Am. Chem. Soc. 2009, 131, 2100-2101. DOI:10.1021/ja8099689
  5. Kwak, Y.; Tezuka, M.; Goto, A.; Fukuda, T.; Yamago, S.; Macromolecules 2007, 40,1881-1885. DOI:10.1021/ma0623385
  6. Yamago, S.; Kayahara, E.; Kotani, M.; Ray, B.; Kwak, Y.; Goto, A.; Fukuda, T. Angew. Chem. Int. Ed. 2007, 46, 1304 –1306. DOI: 10.1002/anie.200604473
  7. Yamago, S.; Ray, B.; Iida, K.; Yoshida, J.; Tada, T.; Yoshizaki, K.; Kwak, Y.; Goto, A.; Fukuda, T. J. Am. Chem. Soc. 2004,126, 13908-13909. DOI:10.1021/ja044787v

関連反応

関連書籍

[amazonjs asin=”B000WM9FRA” locale=”JP” title=”Tellurium in Organic Synthesis: Second, Updated and Enlarged Edition (Best Synthetic Methods) (English Edition)”]

外部リンク

Avatar photo

Maitotoxin

投稿者の記事一覧

学生。高分子合成専門。低分子・高分子を問わず、分子レベルでの創作が好きです。構造が格好よければ全て良し。生物学的・材料学的応用に繋がれば尚良し。Maitotoxinの全合成を待ち望んでいます。

関連記事

  1. ヒュスゲン環化付加 Huisgen Cycloaddition
  2. 酵素による光学分割 Enzymatic Optical Reso…
  3. マンニッヒ反応 Mannich Reaction
  4. 芳香環のハロゲン化 Halogenation of Aromat…
  5. シュタウディンガー ケテン環化付加 Staudinger Ket…
  6. 秋山・寺田触媒 Akiyama-Terada Catalyst
  7. マクコーマック反応 McCormack Reaction
  8. FAMSO

注目情報

ピックアップ記事

  1. 個性あるTOC その②
  2. グラム陰性菌を爆沈!!Darobactin Aの全合成
  3. 北大触媒化研、水素製造コスト2―3割安く
  4. おまえら英語よりもタイピングやろうぜ ~中級編~
  5. グレッグ・バーダイン Gregory L. Verdine
  6. ニーメントウスキー キノリン/キナゾリン合成 Niementowski Quinoline/Quinazoline Synthesis
  7. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  8. 乙種危険物取扱者・合格体験記~読者の皆さん編
  9. Wolfram|Alphaでお手軽物性チェック!「Reagent Table Widget」
  10. What’s Cooking in Chemistry?: How Leading Chemists Succeed in the Kitchen

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

第18回日本化学連合シンポジウム「社会実装を実現する化学人材創出における新たな視点」

日本化学連合ではシンポジウムを毎年2回開催しています。そのうち2025年3月4日開催のシンポジウムで…

理研の一般公開に参加してみた

bergです。去る2024年11月16日(土)、横浜市鶴見区にある、理化学研究所横浜キャンパスの一般…

ツルツルアミノ酸にオレフィンを!脂肪族アミノ酸の脱水素化反応

脂肪族アミノ酸側鎖の脱水素化反応が報告された。本反応で得られるデヒドロアミノ酸は多様な非標準アミノ酸…

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP