[スポンサーリンク]

odos 有機反応データベース

シリル系保護基 Silyl Protective Group

[スポンサーリンク]

アルコール→有機金属化合物

 

概要

  • シリルエーテルは、アルコールの保護に有効である。研究室規模の精密合成では、必ずといっていいほど用いられる。
  • 3つの置換基R’は2つ以上同じものが用いられる。全て異なるとケイ素原子が不斉中心となってしまい、ジアステレオマーの取り扱いが面倒なためである。
  • TBS、TIPS、TBDPS基は立体的にかさ高いため、二級・三級アルコール存在下に一級アルコールのみを選択的に保護することが可能である。

基本文献

Review

開発の歴史

アルコールのシリル化剤として用いたのは米国のE. J. Coreyがはじめてである。1972年にTBSClを塩基としてイミダゾール存在下DMF溶媒中アルコールと反応させると収率よくシリル化体が得られることを発見した。さらにテトラブチルアンモニウムフロリド(TBAF)により除去可能であることも示した。現在ではもっとも頻繁に用いられる保護基の1つとなっている。

 

反応機構

1. 保護
ケイ素化学の常として、置換反応は5配位中間体を経由して進行する。脱離基(最も電気陰性な置換基)がアピカル位を占めるよう擬回転を起こしてから、脱離が起こる。
oh-si-3.gif
2.脱保護
保護の場合と同様、5配位中間体を経由して進行する。酸性条件であっても同様である。シリルカチオンは不安定なため、炭素置換におけるいわゆるSN1経路をとることはない。フッ素源で脱保護される駆動力は、強いSi-F結合形成による(Si-F結合はSi-O結合よりもおよそ30kcal/molほど強い)。
oh-si-4.gif

反応例

  • 保護・脱保護の典型例[1] oh-si-5.gif

 

  • NaHを塩基として用いるとジオールのmono-Protectionが効率よく行える。[2] oh-si-1.gif

 

  • ヨウ素触媒を用いるTMS保護[3]PG_silyl_7.gif

 

  • Si-BEZAを用いる保護[4]:三級アルコールのシリル保護ができる穏和な条件。 PG_silyl_8.gif

 

  • トリスペンタフルオロフェニルボランを用いたシリルエーテル合成[5]:官能基受容性の高さは勿論のこと、混み合ったアルコールを短時間で効果的に保護できる。 PG_silyl_9.gif
    PG_silyl_10.gif

 

  • より嵩高いシリル保護基BIBS[7]:Di-tert-butylisobutylsilyl基は最も嵩高いシリル基である。TIPSよりも1300倍塩基に強い。

2016-01-29_09-25-56

  • ケイ素ケイ素結合をもつトリス(トリアルキル)シリル基(スーパーシリル基)[8]:カルボン酸の保護基として用いることができる。例えば、トリス(トリエチル)シリル基は非常に嵩高いためカルボニル基に求核攻撃が進行しない。

2016-01-29_11-16-17

 

実験手順

 

PG_silyl_11.gif
アルコール(4.40g, 13.6 mmol)をDMF(90 mL)に溶解し、0℃にてイミダゾール(3.88g, 56.9 mmol) とクロロt-ブチルジメチルシラン(4.09g, 27.1 mmol)を加える。室温に昇温し,16時間撹拌する。十分量の水を加えて反応を停止し、水相を酢酸エチルで3回抽出する。有機相を硫酸マグネシウムで乾燥、濾過後濃縮、残渣をカラムクロマトグラフィ(ヘキサン/酢酸エチル=50/1)にて精製。目的物を黄色液体として得る(99%収率)。[6]

※ R’3SiCl/イミダゾールまたはR’3SiOTf/2,6-ルチジンの条件を用いることで、高収率でシリルエーテルを得ることができる。
後者のほうが反応性が高く、低反応性である二級、三級アルコールの保護目的に適している。
※ 脱保護は酸性条件下加水分解(AcOH-THF-H2O etc)あるいはフッ化物イオン(TBAF etc)による方法が一般的である。後者は強力なSi-F結合形成を駆動力とする。

 

実験のコツ・テクニック

※DMFを溶媒として使った際は、クエンチ時に多量の水で薄めた後、ヘキサン(or石油エーテル)/酢酸エチル 混合溶媒系で抽出すると良い。DMFが有機相に来にくくなり、抽出が楽になる。

※ 以下に良く使われる保護基を列挙しておく。TBSが一般的にFirst Choiceとして用いられるが、その他もよく使われている。TMS基はかなり外れやすいため、3級アルコールなどのかさ高いアルコールの保護、もしくは一時的保護目的以外では用いられることは少ない。
PG_silyl_2.gif

※ 酸性条件下での安定性はTMS(1)<TES(64)<TBS(20,000)<TIPS(700,000)<TBDPS(5,000,000)であり、塩基性条件では、TMS(1)<TES(10-100)<TBS, TBDPS(20,000)<TIPS(100,000)である(括弧内の数値はTMSを1とした際の強さを表す)フッ化物イオンに対する安定性はTMS<TES<TIPS<TBS<TBDPSの順である。

2016-01-29_09-14-28

塩基および酸性メタノール溶液中のシリルエーテルの半減期

2016-01-29_09-14-45

TBAF, HClO4を作用させた場合のシリルエーテルの半減期

※ TBAF条件での脱保護後に生じるアンモニウムアルコキシドは強塩基として働くので、塩基に弱い化合物には用いることが出来ない。緩衝目的で酢酸を加えたり、さらに温和な条件(HF・Py、3HF・Et3Nなど)を試す必要がある。

 

参考文献

  1. Oguri, H.; Hishiyama, S.; Oishi, T.;Hirama, M. Synlett 1995, 1252. DOI: 10.1055/s-1995-5259
  2. McDougal, P. G.; Rico, J. G.; Oh, Y.; Condon, B. D. J. Org. Chem. 1986, 51, 3388. DOI: 10.1021/jo00367a033
  3. Karimi, B.; Golshani, B. J. Org. Chem. 200065, 7228. DOI: 10.1021/jo005519s
  4. Misaki, T.; Kurihara, M.; Tanabe, Y.; Chem. Commun., 2001, 2478. doi:10.1039/b107447b
  5. Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887. doi:10.1021/jo9903003
  6. Panek, J. S. et al. J. Org. Chem. 2009, 74, 1897. DOI: 10.1021/jo802269q
  7. Liang, H.; Corey, E. J. Org. Lett. 201113, 4120. DOI:10.1021/ol201640y
  8. tan, J.; Akakura, M.; Yamamoto, H. Angew. Chem. Int. Ed. 2013, 52, 7198. DOI:10.1002/anie.201300102
     

 

関連反応

 

関連書籍

 

外部リンク

関連記事

  1. 交差アルドール反応 Cross Aldol Reaction
  2. 均一系水素化 Homogeneous Hydrogenaton
  3. パール・クノール フラン合成 Paal-Knorr Furan …
  4. ハンスディーカー反応 Hunsdiecker Reaction
  5. ブレデレック ピリミジン合成 Bredereck Pyrimid…
  6. ウルフ・デッツ反応 Wulff-Dotz Reaction
  7. 硫黄-フッ素交換反応 Sulfur(VI)-Fluoride E…
  8. ジイミド還元 Diimide Reduction

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 橘 熊野 Yuya Tachibana
  2. 分子構造を 3D で観察しよう (2)
  3. ケミカルタイムズ 紹介記事シリーズ
  4. 炭素繊維は鉄とアルミに勝るか? 1
  5. 夏の必需品ー虫除けスプレーあれこれ
  6. スケールアップ実験スピードアップ化と経済性計算【終了】
  7. ルチッカ大員環合成 Ruzicka Large Ring Synthesis
  8. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  9. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  10. ディーン・タンティロ Dean J. Tantillo

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ホウ素でがんをやっつける!

「ホウ素」と言ったときに皆さんは何を思い浮かべますか?鈴木宮浦カップリング、ルイス酸(BF3…

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

Chem-Station Twitter

PAGE TOP