[スポンサーリンク]

H

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

[スポンサーリンク]

概要

ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として有用である。

しかしながらイミン形成でのライゲーションを行おうとしても、イミンの熱力学的安定性の乏しさ、反応の可逆性、酸性脱水縮合条件の要請などを理由に、水中・中性pHでの実施が困難となる。

このような事情から、α効果のために求核能に富み、縮合体が加水分解に安定となるオキシム/ヒドラゾン ライゲーションがよく検討されている。

加えて水中・中性条件でも十分な反応性を確保するために、アニリン型求核触媒が利用されている。

基本文献

<nucleophilic catalysis for oxime/hydrazone condensation>
  • Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826.  DOI: 10.1021/ja00864a030
  • Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed. 2006, 45, 7581.  DOI: 10.1002/anie.200602877
  • Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.  DOI: 10.1021/ja067189k
  • Thygesen, M. B.; Munch, H.; Sauer, J.; Cló, E.; Jorgensen, M. R.; Hindsgaul, O.; Jensen, K. J. J. Org. Chem. 2010, 75, 1752. DOI: 10.1021/jo902425v
  • Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p
  • Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x
  • Wendeler, M.; Grinberg, L.; Wang, X.; Dawson, P. E.; Baca, M. Bioconjugate Chem. 2014, 25, 93.  DOI: 10.1021/bc400380f
  • Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j
  •  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
<mechanistic insights>
<review>

開発の経緯

1962年にWilliam P. Jencksらによってアニリンの添加が有機溶媒中でのオキシム/ヒドラゾン形成を促進させることが見いだされた。2006年にはPhilip E. Dawsonらによって中性・水中でも同様の加速効果が確認され、bioconjugationの文脈下にオキシム/ヒドラゾン形成反応の実用性が示された。2013年にEric T. Koolらによって劇的な反応加速をもたらすbifunctional触媒が開発され、現在でも改良が続いている。

Philip E. Dawson

Eric T. Kool

反応機構

オキシム/ヒドラゾンの安定性について[1]

加水分解はイミン窒素のプロトン化によって開始される。 オキシム/ヒドラゾン構造では、イミン窒素に電気陰性原子(O, N)が結合しているため、その塩基性が低下する。このため炭素置換のイミンより加水分解に対して安定となる。置換基によってもその速度論的安定性は異なり、概ね下記順列に従う。またヒドラゾンはリソソーム・エンドソームの酸性環境下(pH 4~6)で不安定であるが中性条件では安定であるため、薬物放出型リンカー応用に用いられる。

またカルボニル側の置換基によっても安定性が異なる。たとえばオキシムの熱力学的安定性は下記順列に従うため、生体共役反応目的にはα-オキソ酸や芳香族アルデヒドが良く用いられる。

求核触媒の効果

オキシム・アシルヒドラゾン形成反応は、中性条件下において常用される他の生体共役反応に比べてもかなり遅い[2]ため、実用に導くには反応加速が必要となる。

アニリン型求核触媒は、トランスイミノ化経由でオキシム/ヒドラゾン形成を加速する。これはイミンの塩基性がカルボニル基よりも高く、より分極したプロトン化化学種への求核攻撃を可能とすることに起因する。pH7でおよそ40倍の加速効果をもたらす。

本反応の律速段階は、四面体中間体からの脱水過程にある。プロトン移動型bifunctional触媒は、この過程を促進させる。

これらの触媒は逆反応も同時に加速させることには留意したい。

反応例

遺伝子工学を用いてカルボニル含有アミノ酸(4-アセチルフェニルアラニンなど)を組み込むことで、位置選択的なライゲーションを行うことができるが、実施ハードルは高くなる。

ネイティブタンパク質を修飾標的とする場合は、他のタンパク質修飾反応によってカルボニル基含有試薬を結合させるか、N末端残基の温和な酸化によって、カルボニル基を露出させることができる(N末端選択的タンパク質修飾反応を参照)。

触媒条件による加速

Kool触媒の利用[3]:アニリン近傍に存在するプロトン性官能基がさらなる加速効果をもたらす。中でも5-methoxyanthranilic acid、2-(aminomethyl)benzimidazoles、5-methyl-2-aminobenzenephosphonic acidなどが良好な触媒として機能する。

電子豊富インドリンが反応を加速させることが報告されている[4]。下記は電子豊富なアルデヒドに対し、中性バッファ中でのヒドラゾンゲル形成を行った事例。

そのほか、アルギニン[5]やNaClの添加[6]が加速効果を示すことも報告されている。

還元による結合安定化

オキシム/ヒドラゾン形成は原理的に可逆性を持つため、必要に応じて還元的アミノ化条件に附すことで、結合を固定化することができる。NaBH3CNがよく用いられる。

細胞表面糖鎖の標識[7]

細胞表面シアル酸から酸化的にアルデヒドを生成させ、オキシムライゲーションで結合させたビオチンを蛍光検出している。アニリン触媒の添加が重要。

Dynamic Combinatorial Chemistry(DCC)への応用例[8]

グルタチオンS-トランスフェラーゼ(GST)をテンプレートとするヒドラゾン形成DCCを行ったところ、アイソザイム毎に異なる阻害剤候補が同定された。アニリンの添加は可逆平衡系へと導くために必要。

人工酵素の形成[9]

p-アミノフェニルアラニン(pAF)をLmrRタンパク質のポケットに組み込む形(V15変異体)で人工酵素を作成し、オキシム/ヒドラゾンライゲーションを進行させている。タンパク質ポケットの疎水場により、アニリンよりも活性が向上されている。

参考文献

  1. Kölmel, D. K.; Kool, E. T. Chem. Rev. 2017, 117, 10358.  DOI: 10.1021/acs.chemrev.7b00090
  2. Saito, F.; Noda, H.; Bode, J. W. ACS Chem. Biol. 2015, 10, 1026. DOI: 10.1021/cb5006728
  3. (a) Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p (b) Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x (c) Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j (d)  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
  4. Zhou, Y.; Piergentili, I.; Hong, J.; van der Helm, M. P.; Machione, M.; Li, Y.; Eelkema, R.; Luo, S. Org. Lett. 2020, 22, 6035. doi:10.1021/acs.orglett.0c02128
  5. Ollivier, N.; Agouridas, V.; Snella, B.; Desmet, R.; Drobecq, H.; Vicogne, J.; Melnyk, O. Org. Lett. 2020, doi:10.1021/acs.orglett.0c03195
  6. Wang, S.; Nawale, G. N.; Kadekar, S.; Oommen, O. P.; Jena, N. K.; Chakraborty, S.; Hilborn, J.; Varghese, O. P. Sci. Rep. 2018, 8, 2193.  DOI: 10.1038/s41598-018-20735-0
  7. Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207. DOI: 10.1038/nmeth.1305
  8. Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.; Campopiano, D. J.; Greaney, M. F. Nat. Chem. 2010, 2, 490.  DOI: 10.1038/nchem.658
  9. (a) Drienovská, I.; Mayer, C.; Dulson, C.; Roelfes, G. Nat. Chem. 2018, 10, 946.  DOI: 10.1038/s41557-018-0082-z (b) Roelfes, G. Acc. Chem. Res. 2019, 52, 545.  DOI: 10.1021/acs.accounts.9b00004

関連書籍

関連反応

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ジオキシラン酸化 Oxidation with Dioxiran…
  2. ポメランツ・フリッチュ イソキノリン合成 Pomeranz-Fr…
  3. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…
  4. 有機テルル媒介リビングラジカル重合 Organotelluriu…
  5. カラッシュ付加反応 Kharasch Addition
  6. ペタシス反応 Petasis Reaction
  7. [6π]光環化 [6π]Photocyclization
  8. ボールドウィン則 Baldwin’s Rule

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  2. Late-Stage C(sp3)-H活性化法でステープルペプチドを作る
  3. ゴキブリをバイオ燃料電池、そしてセンサーに
  4. 私がケムステスタッフになったワケ(2)
  5. 薬学部6年制の現状と未来
  6. 世界5大化学会がChemRxivのサポーターに
  7. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  8. 光化学フロンティア:未来材料を生む有機光化学の基礎
  9. なぜクロスカップリングは日本で発展したのか?
  10. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

Chem-Station Twitter

PAGE TOP