[スポンサーリンク]

H

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

[スポンサーリンク]

概要

ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として有用である。

しかしながらイミン形成でのライゲーションを行おうとしても、イミンの熱力学的安定性の乏しさ、反応の可逆性、酸性脱水縮合条件の要請などを理由に、水中・中性pHでの実施が困難となる。

このような事情から、α効果のために求核能に富み、縮合体が加水分解に安定となるオキシム/ヒドラゾン ライゲーションがよく検討されている。

加えて水中・中性条件でも十分な反応性を確保するために、アニリン型求核触媒が利用されている。

基本文献

<nucleophilic catalysis for oxime/hydrazone condensation>
  • Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826.  DOI: 10.1021/ja00864a030
  • Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed. 2006, 45, 7581.  DOI: 10.1002/anie.200602877
  • Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.  DOI: 10.1021/ja067189k
  • Thygesen, M. B.; Munch, H.; Sauer, J.; Cló, E.; Jorgensen, M. R.; Hindsgaul, O.; Jensen, K. J. J. Org. Chem. 2010, 75, 1752. DOI: 10.1021/jo902425v
  • Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p
  • Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x
  • Wendeler, M.; Grinberg, L.; Wang, X.; Dawson, P. E.; Baca, M. Bioconjugate Chem. 2014, 25, 93.  DOI: 10.1021/bc400380f
  • Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j
  •  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
<mechanistic insights>
<review>

開発の経緯

1962年にWilliam P. Jencksらによってアニリンの添加が有機溶媒中でのオキシム/ヒドラゾン形成を促進させることが見いだされた。2006年にはPhilip E. Dawsonらによって中性・水中でも同様の加速効果が確認され、bioconjugationの文脈下にオキシム/ヒドラゾン形成反応の実用性が示された。2013年にEric T. Koolらによって劇的な反応加速をもたらすbifunctional触媒が開発され、現在でも改良が続いている。

Philip E. Dawson

Eric T. Kool

反応機構

オキシム/ヒドラゾンの安定性について[1]

加水分解はイミン窒素のプロトン化によって開始される。 オキシム/ヒドラゾン構造では、イミン窒素に電気陰性原子(O, N)が結合しているため、その塩基性が低下する。このため炭素置換のイミンより加水分解に対して安定となる。置換基によってもその速度論的安定性は異なり、概ね下記順列に従う。またヒドラゾンはリソソーム・エンドソームの酸性環境下(pH 4~6)で不安定であるが中性条件では安定であるため、薬物放出型リンカー応用に用いられる。

またカルボニル側の置換基によっても安定性が異なる。たとえばオキシムの熱力学的安定性は下記順列に従うため、生体共役反応目的にはα-オキソ酸や芳香族アルデヒドが良く用いられる。

求核触媒の効果

オキシム・アシルヒドラゾン形成反応は、中性条件下において常用される他の生体共役反応に比べてもかなり遅い[2]ため、実用に導くには反応加速が必要となる。

アニリン型求核触媒は、トランスイミノ化経由でオキシム/ヒドラゾン形成を加速する。これはイミンの塩基性がカルボニル基よりも高く、より分極したプロトン化化学種への求核攻撃を可能とすることに起因する。pH7でおよそ40倍の加速効果をもたらす。

本反応の律速段階は、四面体中間体からの脱水過程にある。プロトン移動型bifunctional触媒は、この過程を促進させる。

これらの触媒は逆反応も同時に加速させることには留意したい。

反応例

遺伝子工学を用いてカルボニル含有アミノ酸(4-アセチルフェニルアラニンなど)を組み込むことで、位置選択的なライゲーションを行うことができるが、実施ハードルは高くなる。

ネイティブタンパク質を修飾標的とする場合は、他のタンパク質修飾反応によってカルボニル基含有試薬を結合させるか、N末端残基の温和な酸化によって、カルボニル基を露出させることができる(N末端選択的タンパク質修飾反応を参照)。

触媒条件による加速

Kool触媒の利用[3]:アニリン近傍に存在するプロトン性官能基がさらなる加速効果をもたらす。中でも5-methoxyanthranilic acid、2-(aminomethyl)benzimidazoles、5-methyl-2-aminobenzenephosphonic acidなどが良好な触媒として機能する。

電子豊富インドリンが反応を加速させることが報告されている[4]。下記は電子豊富なアルデヒドに対し、中性バッファ中でのヒドラゾンゲル形成を行った事例。

そのほか、アルギニン[5]やNaClの添加[6]が加速効果を示すことも報告されている。

還元による結合安定化

オキシム/ヒドラゾン形成は原理的に可逆性を持つため、必要に応じて還元的アミノ化条件に附すことで、結合を固定化することができる。NaBH3CNがよく用いられる。

細胞表面糖鎖の標識[7]

細胞表面シアル酸から酸化的にアルデヒドを生成させ、オキシムライゲーションで結合させたビオチンを蛍光検出している。アニリン触媒の添加が重要。

Dynamic Combinatorial Chemistry(DCC)への応用例[8]

グルタチオンS-トランスフェラーゼ(GST)をテンプレートとするヒドラゾン形成DCCを行ったところ、アイソザイム毎に異なる阻害剤候補が同定された。アニリンの添加は可逆平衡系へと導くために必要。

人工酵素の形成[9]

p-アミノフェニルアラニン(pAF)をLmrRタンパク質のポケットに組み込む形(V15変異体)で人工酵素を作成し、オキシム/ヒドラゾンライゲーションを進行させている。タンパク質ポケットの疎水場により、アニリンよりも活性が向上されている。

参考文献

  1. Kölmel, D. K.; Kool, E. T. Chem. Rev. 2017, 117, 10358.  DOI: 10.1021/acs.chemrev.7b00090
  2. Saito, F.; Noda, H.; Bode, J. W. ACS Chem. Biol. 2015, 10, 1026. DOI: 10.1021/cb5006728
  3. (a) Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p (b) Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x (c) Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j (d)  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
  4. Zhou, Y.; Piergentili, I.; Hong, J.; van der Helm, M. P.; Machione, M.; Li, Y.; Eelkema, R.; Luo, S. Org. Lett. 2020, 22, 6035. doi:10.1021/acs.orglett.0c02128
  5. Ollivier, N.; Agouridas, V.; Snella, B.; Desmet, R.; Drobecq, H.; Vicogne, J.; Melnyk, O. Org. Lett. 2020, doi:10.1021/acs.orglett.0c03195
  6. Wang, S.; Nawale, G. N.; Kadekar, S.; Oommen, O. P.; Jena, N. K.; Chakraborty, S.; Hilborn, J.; Varghese, O. P. Sci. Rep. 2018, 8, 2193.  DOI: 10.1038/s41598-018-20735-0
  7. Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207. DOI: 10.1038/nmeth.1305
  8. Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.; Campopiano, D. J.; Greaney, M. F. Nat. Chem. 2010, 2, 490.  DOI: 10.1038/nchem.658
  9. (a) Drienovská, I.; Mayer, C.; Dulson, C.; Roelfes, G. Nat. Chem. 2018, 10, 946.  DOI: 10.1038/s41557-018-0082-z (b) Roelfes, G. Acc. Chem. Res. 2019, 52, 545.  DOI: 10.1021/acs.accounts.9b00004

関連書籍

関連反応

外部リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 四酸化オスミウム Osmium Tetroxide (OsO4)…
  2. ハウザー・クラウス環形成反応 Hauser-Kraus Annu…
  3. デミヤノフ転位 Demjanov Rearrangement
  4. ネフ反応 Nef Reaction
  5. スズアセタールを用いる選択的変換 Selective Trans…
  6. マイヤース・斉藤環化 Myers-Saito Cyclizati…
  7. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 H…
  8. ストーク エナミン Stork Enamine

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光刺激に応答して形状を変化させる高分子の合成
  2. ブルース・ギブ Bruce C. Gibb
  3. 書籍「Topics in Current Chemistry」がジャーナルになるらしい
  4. SPring-8って何?(初級編)
  5. 庄野酸化 Shono Oxidation
  6. 顕微鏡で有機分子の形が見えた!
  7. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  8. 呉羽化学、明るさを保ちながら熱をカットする窓ガラス用素材
  9. ニホニウムグッズをAmazonでゲットだぜ!
  10. 疑惑の論文200本発見 米大が盗作探知プログラム開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
« 10月   12月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP