[スポンサーリンク]

H

オキシム/ヒドラゾンライゲーション Oxime/Hydrazone Ligation

[スポンサーリンク]

概要

ケトン・アルデヒドは生体分子にまれにしか存在しないため、位置選択的な生体共役反応の標的として有用である。

しかしながらイミン形成でのライゲーションを行おうとしても、イミンの熱力学的安定性の乏しさ、反応の可逆性、酸性脱水縮合条件の要請などを理由に、水中・中性pHでの実施が困難となる。

このような事情から、α効果のために求核能に富み、縮合体が加水分解に安定となるオキシム/ヒドラゾン ライゲーションがよく検討されている。

加えて水中・中性条件でも十分な反応性を確保するために、アニリン型求核触媒が利用されている。

基本文献

<nucleophilic catalysis for oxime/hydrazone condensation>
  • Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826.  DOI: 10.1021/ja00864a030
  • Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed. 2006, 45, 7581.  DOI: 10.1002/anie.200602877
  • Dirksen, A.; Dirksen, S.; Hackeng, T. M.; Dawson, P. E. J. Am. Chem. Soc. 2006, 128, 15602.  DOI: 10.1021/ja067189k
  • Thygesen, M. B.; Munch, H.; Sauer, J.; Cló, E.; Jorgensen, M. R.; Hindsgaul, O.; Jensen, K. J. J. Org. Chem. 2010, 75, 1752. DOI: 10.1021/jo902425v
  • Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p
  • Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x
  • Wendeler, M.; Grinberg, L.; Wang, X.; Dawson, P. E.; Baca, M. Bioconjugate Chem. 2014, 25, 93.  DOI: 10.1021/bc400380f
  • Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j
  •  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
<mechanistic insights>
<review>

開発の経緯

1962年にWilliam P. Jencksらによってアニリンの添加が有機溶媒中でのオキシム/ヒドラゾン形成を促進させることが見いだされた。2006年にはPhilip E. Dawsonらによって中性・水中でも同様の加速効果が確認され、bioconjugationの文脈下にオキシム/ヒドラゾン形成反応の実用性が示された。2013年にEric T. Koolらによって劇的な反応加速をもたらすbifunctional触媒が開発され、現在でも改良が続いている。

Philip E. Dawson

Eric T. Kool

反応機構

オキシム/ヒドラゾンの安定性について[1]

加水分解はイミン窒素のプロトン化によって開始される。 オキシム/ヒドラゾン構造では、イミン窒素に電気陰性原子(O, N)が結合しているため、その塩基性が低下する。このため炭素置換のイミンより加水分解に対して安定となる。置換基によってもその速度論的安定性は異なり、概ね下記順列に従う。またヒドラゾンはリソソーム・エンドソームの酸性環境下(pH 4~6)で不安定であるが中性条件では安定であるため、薬物放出型リンカー応用に用いられる。

またカルボニル側の置換基によっても安定性が異なる。たとえばオキシムの熱力学的安定性は下記順列に従うため、生体共役反応目的にはα-オキソ酸や芳香族アルデヒドが良く用いられる。

求核触媒の効果

オキシム・アシルヒドラゾン形成反応は、中性条件下において常用される他の生体共役反応に比べてもかなり遅い[2]ため、実用に導くには反応加速が必要となる。

アニリン型求核触媒は、トランスイミノ化経由でオキシム/ヒドラゾン形成を加速する。これはイミンの塩基性がカルボニル基よりも高く、より分極したプロトン化化学種への求核攻撃を可能とすることに起因する。pH7でおよそ40倍の加速効果をもたらす。

本反応の律速段階は、四面体中間体からの脱水過程にある。プロトン移動型bifunctional触媒は、この過程を促進させる。

これらの触媒は逆反応も同時に加速させることには留意したい。

反応例

遺伝子工学を用いてカルボニル含有アミノ酸(4-アセチルフェニルアラニンなど)を組み込むことで、位置選択的なライゲーションを行うことができるが、実施ハードルは高くなる。

ネイティブタンパク質を修飾標的とする場合は、他のタンパク質修飾反応によってカルボニル基含有試薬を結合させるか、N末端残基の温和な酸化によって、カルボニル基を露出させることができる(N末端選択的タンパク質修飾反応を参照)。

触媒条件による加速

Kool触媒の利用[3]:アニリン近傍に存在するプロトン性官能基がさらなる加速効果をもたらす。中でも5-methoxyanthranilic acid、2-(aminomethyl)benzimidazoles、5-methyl-2-aminobenzenephosphonic acidなどが良好な触媒として機能する。

電子豊富インドリンが反応を加速させることが報告されている[4]。下記は電子豊富なアルデヒドに対し、中性バッファ中でのヒドラゾンゲル形成を行った事例。

そのほか、アルギニン[5]やNaClの添加[6]が加速効果を示すことも報告されている。

還元による結合安定化

オキシム/ヒドラゾン形成は原理的に可逆性を持つため、必要に応じて還元的アミノ化条件に附すことで、結合を固定化することができる。NaBH3CNがよく用いられる。

細胞表面糖鎖の標識[7]

細胞表面シアル酸から酸化的にアルデヒドを生成させ、オキシムライゲーションで結合させたビオチンを蛍光検出している。アニリン触媒の添加が重要。

Dynamic Combinatorial Chemistry(DCC)への応用例[8]

グルタチオンS-トランスフェラーゼ(GST)をテンプレートとするヒドラゾン形成DCCを行ったところ、アイソザイム毎に異なる阻害剤候補が同定された。アニリンの添加は可逆平衡系へと導くために必要。

人工酵素の形成[9]

p-アミノフェニルアラニン(pAF)をLmrRタンパク質のポケットに組み込む形(V15変異体)で人工酵素を作成し、オキシム/ヒドラゾンライゲーションを進行させている。タンパク質ポケットの疎水場により、アニリンよりも活性が向上されている。

参考文献

  1. Kölmel, D. K.; Kool, E. T. Chem. Rev. 2017, 117, 10358.  DOI: 10.1021/acs.chemrev.7b00090
  2. Saito, F.; Noda, H.; Bode, J. W. ACS Chem. Biol. 2015, 10, 1026. DOI: 10.1021/cb5006728
  3. (a) Crisalli, P.; Kool, E. T. J. Org. Chem. 2013, 78, 1184.  DOI: 10.1021/jo302746p (b) Crisalli, P.; Kool, E. T. Org. Lett. 2013, 15, 1646.  DOI: 10.1021/ol400427x (c) Larsen, D.; Pittelkow, M.; Karmakar, S.; Kool, E. T. Org. Lett. 2015, 17, 274.  DOI: 10.1021/ol503372j (d)  Larsen, D.; Kietrys, A. M.; Clark, S. A.; Park, H. S.; Ekebergh, A.; Kool, E. T. Chem. Sci. 2018, 9, 5252.  DOI: 10.1039/C8SC01082J
  4. Zhou, Y.; Piergentili, I.; Hong, J.; van der Helm, M. P.; Machione, M.; Li, Y.; Eelkema, R.; Luo, S. Org. Lett. 2020, 22, 6035. doi:10.1021/acs.orglett.0c02128
  5. Ollivier, N.; Agouridas, V.; Snella, B.; Desmet, R.; Drobecq, H.; Vicogne, J.; Melnyk, O. Org. Lett. 2020, doi:10.1021/acs.orglett.0c03195
  6. Wang, S.; Nawale, G. N.; Kadekar, S.; Oommen, O. P.; Jena, N. K.; Chakraborty, S.; Hilborn, J.; Varghese, O. P. Sci. Rep. 2018, 8, 2193.  DOI: 10.1038/s41598-018-20735-0
  7. Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207. DOI: 10.1038/nmeth.1305
  8. Bhat, V. T.; Caniard, A. M.; Luksch, T.; Brenk, R.; Campopiano, D. J.; Greaney, M. F. Nat. Chem. 2010, 2, 490.  DOI: 10.1038/nchem.658
  9. (a) Drienovská, I.; Mayer, C.; Dulson, C.; Roelfes, G. Nat. Chem. 2018, 10, 946.  DOI: 10.1038/s41557-018-0082-z (b) Roelfes, G. Acc. Chem. Res. 2019, 52, 545.  DOI: 10.1021/acs.accounts.9b00004

関連書籍

[amazonjs asin=”B00ECIJONK” locale=”JP” title=”Bioconjugate Techniques (English Edition)”]

関連反応

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Pr…
  2. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Bor…
  3. カルボン酸の保護 Protection of Carboxyli…
  4. フィッツナー・モファット酸化 Pfitzner-Moffatt …
  5. アルキンの水和反応 Hydration of Alkyne
  6. マーフィー試薬 Marfey reagent
  7. フェイスト・ベナリー フラン合成 Feist-Benary Fu…
  8. コーリー・バクシ・柴田還元 Corey-Bakshi-Shiba…

注目情報

ピックアップ記事

  1. 私がケムステスタッフになったワケ(3)
  2. 毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~
  3. ペタシス・フェリエ転位 Petasis-Ferrier Rearrangement
  4. ジアリールエテン縮環二量体の二閉環体の合成に成功
  5. 前田 和彦 Kazuhiko Maeda
  6. 向山縮合試薬 Mukaiyama Condensation Reagent
  7. 日本入国プロトコル(2022年6月末現在)
  8. 万有製薬、つくば研究所を閉鎖
  9. ポルフィリン中心金属の違いが薄膜構造を変える~配位結合を利用した新たな分子配向制御法の開発~
  10. ボーディペプチド合成 Bode Peptide Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP