[スポンサーリンク]

N

野崎・檜山・岸反応 Nozaki-Hiyama-Kishi (NHK) Reaction

[スポンサーリンク]

概要

塩化クロム(II)を当量還元剤として用いる、アルケニルハライドまたはトリフラートとアルデヒド間のカップリング反応。不飽和アルデヒドの場合には1,2-付加が選択的に進む。その他ハロゲン化アルキニル、ハロゲン化アリルなどでも同様の反応が進行する。

触媒量のニッケル(II)の添加が反応を劇的に加速させることが知られている。

本反応は室温・中性という穏和な条件で進行し、官能基選択性も極めて高い。ケトンやエステルなどが共存していても、アルデヒド選択的に反応が進行する。複雑化合物に対しても適用可能であり、全合成の最終段階や多官能基性フラグメントカップリングにも頻用される。

基本文献

<review>
<trace metal impurity in catalysis>

開発の歴史

1977年に野崎檜山らがハロゲン化アリルおよびハロゲン化ビニルをCr(II)と反応させる条件を報告した。その後、1986年におよび野崎らのグループによってそれぞれ独立に、用いたCrCl2の購入元やロットに依存して大きく収率がばらつくことが観察され、クロムに含まれる微量のニッケルが高活性・再現性に必須であることが突き止められた。

1996年にはFürstnerらによって、金属マンガンを共還元剤として用いることで、クロムを触媒量に低減可能であることが報告された。

反応機構

系内で還元されたニッケル(0)へとアルケニルハライドが酸化的付加し、続いてクロム(III)へのトランスメタル化が起こる。アルデヒドと反応するのは、アルケニルクロム種と考えられている。有機クロム種の反応性はそれほど高くないため、アルデヒド選択的に反応が進む。

金属マンガン共還元剤を用いる触媒条件では、Crから生成物を解離させるため、TMSClを添加することが鍵。

反応例

不斉反応への応用

1995年、岸らによって初の不斉NHK反応が報告された[1]。

その後、数多の化学者による検討を通じ、クロムを触媒量に低減しつつ、不斉収率の向上が達成されている。報告の多くは不斉アリル化形式である。下記は過去検討された不斉配位子。

2007年にSigmanらは、ケトンに対する初の触媒的不斉NHKアリル化反応を報告している[2]。

不斉アルケニル化は岸らによって精力的に検討され、ハリコンドリンの部分構造合成[3]などへも応用されている。

可視光レドックス触媒系を用いるC-H活性化を介し、クロムを触媒量に減じた不斉触媒系が近年報告されている[4]。

全合成への応用

有機リチウム試薬Grignard試薬と比べて官能基選択性が極めて高いため、全合成への適用例が多く報告されている。

NHK反応を巧みに利用したパリトキシン[5]・ハリコンドリン[6]の全合成は、天然物合成化学における金字塔である。例えば以下はハリコンドリン部分構造合成の俯瞰図だが、多数回の不斉NHK反応が使用されている[6b]。


4-hydroxydictyolactoneの合成[7]:分子内形式であればホルメート基とも反応し、ラクトールを与える。

分子内環化による大環状骨格合成にもよく用いられる。下記は(-)-Bipinnatin J合成における最終工程[8]。6員環遷移状態を経由するため、高いジアステレオ選択性で目的物を与える。

Briarellin Eの全合成[9]:最終工程で大環状化NHK反応が用いられている。

(-)-Pestalotioptin Aの全合成[10]:極めて歪んだ縮環骨格の構築にNHK反応が用いられている。

多官能基性フラグメントカップリングにも用いられる。下記はPetenotoxin 2の部分構造合成に適用した例[11]。

実験手順

2-hexyl-5-phenyl-1-penten-1-olの合成[12]


乾燥した500 mLの四径丸底フラスコに、メカニカルスターラーバー、窒素注入口、ラバーセプタム、ラバーセプタムで密閉された100 mLの滴下漏斗を備える。フラスコ中に無水塩化クロム(II)(CrCl2)(10 g、80 mmol)および無水塩化ニッケル(II)(NiCl2)(52 mg、0.4 mmol)を入れ、アルゴン置換する。フラスコを0°Cに冷却し、脱気した乾燥N,N−ジメチルホルムアミド(250 mL)を撹拌しながらフラスコに加え、混合物を0°Cで10分間撹拌する。この溶液に3-フェニルプロパナール(2.7 g、20 mmol)のDMF(20 mL)溶液を、25°C、シリンジで加える。1-ヘキシルエチレントリフラート(10 g、40 mmol)のDMF(60 mL)溶液を、25°Cで5分間かけて滴下する。溶液全体を25°Cで30分間攪拌する。反応混合物をエーテル(200 mL)で希釈し、氷冷した水(400 mL)に注ぎ、エーテル(3×200 mL)で抽出する。合わせた抽出物を塩化ナトリウム水溶液(150 mL)で洗浄、無水硫酸ナトリウムで乾燥し、濃縮する。粗生成物を蒸留し、4.0~4.6 g (82~94%)の2-hexyl-5-phenyl-1-penten-1-ol(bp 109~111°C、0.11 mmHg)を得る。

実験のコツ・テクニック

  • 2価クロムは酸素に敏感であるため、不活性ガス雰囲気下で反応を行う必要がある。
  • 3価クロムは人体に吸収されづらく、毒性が低いとされている[13](一方で、6価クロムは毒性が極めて強い)。クロムの毒性についてはこちらも参照。

関連動画

 

参考文献

  1. Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386. doi:10.1021/jo00122a011
  2. Miller, J. J.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 2752. doi:10.1021/ja068915m
  3. Choi, H.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435. doi:10.1021/ol026981x
  4. (a) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705. doi:10.1021/jacs.8b08052 (b) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459. DOI:10.1039/C8SC05677C
  5. Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205. DOI: 10.1021/ja00103a065
  6. (a) Kishi, Y. et al. J. Am. Chem. Soc. 1992, 114, 3162. DOI: 10.1021/ja00034a086 (b) Kishi, Y. et al. J. Am. Chem. Soc. 2009, 131, 15636. DOI: 10.1021/ja9058475
  7. Williams, D. R.; Walsh, M. J.; Miller, N. A. J. Am. Chem. Soc. 2009, 131, 9038. doi:10.1021/ja902677t 
  8. Tang, B.; Bray, C. D.; Pattenden, G. Org. Biomol. Chem. 2009, 7, 4448. doi: 10.1039/B910572G
  9. (a)  Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2003, 125, 6650. doi:10.1021/ja035445c (b) Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Org. Chem. 2009, 74, 5458. doi:10.1021/jo9010156
  10. Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Angew. Chem. Int. Ed. 2008, 47, 3426. doi:10.1002/anie.200800253
  11. Kubo, O.; Canterbury, D. P.; Micalizio, G. C. Org. Lett. 2012, 14, 5748. doi:10.1021/ol302751b
  12. Takai, K.; Sakogawa, K.; Kataoka, Y.; Oshima, K.; Utimoto, K. Org. Synth. 1995, 72, 180. DOI: 10.15227/orgsyn.072.0180
  13. Katz, S. A.; Salem, H. J. Appl. Toxicol. 1992, 13, 217. doi:10.1002/jat.2550130314

関連反応

関連書籍

[amazonjs asin=”3527331549″ locale=”JP” title=”Metal Catalyzed Cross-Coupling Reactions and More, 3 Volume Set”]

外部リンク

関連記事

  1. チャン・ラム・エヴァンス カップリング Chan-Lam-Eva…
  2. キャロル転位 Carroll Rearrangement
  3. ボロン酸の保護基 Protecting Groups for B…
  4. ボーディペプチド合成 Bode Peptide Synthesi…
  5. 【クリックは完了. よし壊せ!】イミノカルベノイドによる渡環およ…
  6. 芳香族求核置換反応 Nucleophilic Aromatic …
  7. ハートウィグ・宮浦C-Hホウ素化反応 Hartwig-Miyau…
  8. マンニッヒ反応 Mannich Reaction

注目情報

ピックアップ記事

  1. 肩こりにはラベンダーを
  2. 化学者のためのエレクトロニクス講座~無電解卑金属めっきの各論編~
  3. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  4. 2005年6月分の気になる化学関連ニュース投票結果
  5. NaHの水素原子の酸化数は?
  6. 「次世代医療を目指した細胞間コミュニケーションのエンジニアリング」ETH Zurich、Martin Fussenegger研より
  7. ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバルヘルスに貢献する天然物化学の新潮流 ~
  8. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  9. 新しい抗生物質発見:MRSAを1分で99.99%殺菌
  10. アザボリンはニ度異性化するっ!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP