[スポンサーリンク]

N

野崎・檜山・岸反応 Nozaki-Hiyama-Kishi (NHK) Reaction

[スポンサーリンク]

概要

塩化クロム(II)を当量還元剤として用いる、アルケニルハライドまたはトリフラートとアルデヒド間のカップリング反応。不飽和アルデヒドの場合には1,2-付加が選択的に進む。その他ハロゲン化アルキニル、ハロゲン化アリルなどでも同様の反応が進行する。

触媒量のニッケル(II)の添加が反応を劇的に加速させることが知られている。

本反応は室温・中性という穏和な条件で進行し、官能基選択性も極めて高い。ケトンやエステルなどが共存していても、アルデヒド選択的に反応が進行する。複雑化合物に対しても適用可能であり、全合成の最終段階や多官能基性フラグメントカップリングにも頻用される。

基本文献

<review>
<trace metal impurity in catalysis>

開発の歴史

1977年に野崎檜山らがハロゲン化アリルおよびハロゲン化ビニルをCr(II)と反応させる条件を報告した。その後、1986年におよび野崎らのグループによってそれぞれ独立に、用いたCrCl2の購入元やロットに依存して大きく収率がばらつくことが観察され、クロムに含まれる微量のニッケルが高活性・再現性に必須であることが突き止められた。

1996年にはFürstnerらによって、金属マンガンを共還元剤として用いることで、クロムを触媒量に低減可能であることが報告された。

反応機構

系内で還元されたニッケル(0)へとアルケニルハライドが酸化的付加し、続いてクロム(III)へのトランスメタル化が起こる。アルデヒドと反応するのは、アルケニルクロム種と考えられている。有機クロム種の反応性はそれほど高くないため、アルデヒド選択的に反応が進む。

金属マンガン共還元剤を用いる触媒条件では、Crから生成物を解離させるため、TMSClを添加することが鍵。

反応例

不斉反応への応用

1995年、岸らによって初の不斉NHK反応が報告された[1]。

その後、数多の化学者による検討を通じ、クロムを触媒量に低減しつつ、不斉収率の向上が達成されている。報告の多くは不斉アリル化形式である。下記は過去検討された不斉配位子。

2007年にSigmanらは、ケトンに対する初の触媒的不斉NHKアリル化反応を報告している[2]。

不斉アルケニル化は岸らによって精力的に検討され、ハリコンドリンの部分構造合成[3]などへも応用されている。

可視光レドックス触媒系を用いるC-H活性化を介し、クロムを触媒量に減じた不斉触媒系が近年報告されている[4]。

全合成への応用

有機リチウム試薬Grignard試薬と比べて官能基選択性が極めて高いため、全合成への適用例が多く報告されている。

NHK反応を巧みに利用したパリトキシン[5]・ハリコンドリン[6]の全合成は、天然物合成化学における金字塔である。例えば以下はハリコンドリン部分構造合成の俯瞰図だが、多数回の不斉NHK反応が使用されている[6b]。


4-hydroxydictyolactoneの合成[7]:分子内形式であればホルメート基とも反応し、ラクトールを与える。

分子内環化による大環状骨格合成にもよく用いられる。下記は(-)-Bipinnatin J合成における最終工程[8]。6員環遷移状態を経由するため、高いジアステレオ選択性で目的物を与える。

Briarellin Eの全合成[9]:最終工程で大環状化NHK反応が用いられている。

(-)-Pestalotioptin Aの全合成[10]:極めて歪んだ縮環骨格の構築にNHK反応が用いられている。

多官能基性フラグメントカップリングにも用いられる。下記はPetenotoxin 2の部分構造合成に適用した例[11]。

実験手順

2-hexyl-5-phenyl-1-penten-1-olの合成[12]


乾燥した500 mLの四径丸底フラスコに、メカニカルスターラーバー、窒素注入口、ラバーセプタム、ラバーセプタムで密閉された100 mLの滴下漏斗を備える。フラスコ中に無水塩化クロム(II)(CrCl2)(10 g、80 mmol)および無水塩化ニッケル(II)(NiCl2)(52 mg、0.4 mmol)を入れ、アルゴン置換する。フラスコを0°Cに冷却し、脱気した乾燥N,N−ジメチルホルムアミド(250 mL)を撹拌しながらフラスコに加え、混合物を0°Cで10分間撹拌する。この溶液に3-フェニルプロパナール(2.7 g、20 mmol)のDMF(20 mL)溶液を、25°C、シリンジで加える。1-ヘキシルエチレントリフラート(10 g、40 mmol)のDMF(60 mL)溶液を、25°Cで5分間かけて滴下する。溶液全体を25°Cで30分間攪拌する。反応混合物をエーテル(200 mL)で希釈し、氷冷した水(400 mL)に注ぎ、エーテル(3×200 mL)で抽出する。合わせた抽出物を塩化ナトリウム水溶液(150 mL)で洗浄、無水硫酸ナトリウムで乾燥し、濃縮する。粗生成物を蒸留し、4.0~4.6 g (82~94%)の2-hexyl-5-phenyl-1-penten-1-ol(bp 109~111°C、0.11 mmHg)を得る。

実験のコツ・テクニック

  • 2価クロムは酸素に敏感であるため、不活性ガス雰囲気下で反応を行う必要がある。
  • 3価クロムは人体に吸収されづらく、毒性が低いとされている[13](一方で、6価クロムは毒性が極めて強い)。クロムの毒性についてはこちらも参照。

関連動画

 

参考文献

  1. Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem. 1995, 60, 5386. doi:10.1021/jo00122a011
  2. Miller, J. J.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 2752. doi:10.1021/ja068915m
  3. Choi, H.; Nakajima, K.; Demeke, D.; Kang, F.-A.; Jun, H.-S.; Wan, Z.-K.; Kishi, Y. Org. Lett. 2002, 4, 4435. doi:10.1021/ol026981x
  4. (a) Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705. doi:10.1021/jacs.8b08052 (b) Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M. Chem. Sci. 2019, 10, 3459. DOI:10.1039/C8SC05677C
  5. Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205. DOI: 10.1021/ja00103a065
  6. (a) Kishi, Y. et al. J. Am. Chem. Soc. 1992, 114, 3162. DOI: 10.1021/ja00034a086 (b) Kishi, Y. et al. J. Am. Chem. Soc. 2009, 131, 15636. DOI: 10.1021/ja9058475
  7. Williams, D. R.; Walsh, M. J.; Miller, N. A. J. Am. Chem. Soc. 2009, 131, 9038. doi:10.1021/ja902677t 
  8. Tang, B.; Bray, C. D.; Pattenden, G. Org. Biomol. Chem. 2009, 7, 4448. doi: 10.1039/B910572G
  9. (a)  Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Am. Chem. Soc. 2003, 125, 6650. doi:10.1021/ja035445c (b) Corminboeuf, O.; Overman, L. E.; Pennington, L. D. J. Org. Chem. 2009, 74, 5458. doi:10.1021/jo9010156
  10. Takao, K.; Hayakawa, N.; Yamada, R.; Yamaguchi, T.; Morita, U.; Kawasaki, S.; Tadano, K. Angew. Chem. Int. Ed. 2008, 47, 3426. doi:10.1002/anie.200800253
  11. Kubo, O.; Canterbury, D. P.; Micalizio, G. C. Org. Lett. 2012, 14, 5748. doi:10.1021/ol302751b
  12. Takai, K.; Sakogawa, K.; Kataoka, Y.; Oshima, K.; Utimoto, K. Org. Synth. 1995, 72, 180. DOI: 10.15227/orgsyn.072.0180
  13. Katz, S. A.; Salem, H. J. Appl. Toxicol. 1992, 13, 217. doi:10.1002/jat.2550130314

関連反応

関連書籍

外部リンク

関連記事

  1. エドマン分解 Edman Degradation
  2. ボロン酸の保護基 Protecting Groups for B…
  3. ピナー反応 Pinner Reaction
  4. ジェイコブセン・香月エポキシ化反応 Jacobsen-Katsu…
  5. 触媒的C-H酸化反応 Catalytic C-H Oxidati…
  6. 向山水和反応 Mukaiyama Hydration
  7. 求核剤担持型脱離基 Nucleophile-Assisting …
  8. 求核的フルオロアルキル化 Nucleophilic Fluoro…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポンコツ博士の海外奮闘録 外伝① 〜調剤薬局18時〜
  2. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年の難溶性問題を解決~
  3. オーヴァーマン転位 Overman Rearrangement
  4. 海外で開発された強靭なソフトマテリアル
  5. オキシ水銀化・脱水銀化 Oxymercuration-Demercuration
  6. トム・マイモニ Thomas J. Maimone
  7. 元素のふるさと図鑑
  8. デヴィッド・ニセヴィッツ David A. Nicewicz
  9. 医薬品天然物化学 (Medicinal Natural Products: A Biosynthetic Approach)
  10. 安定な環状ケトンのC–C結合を組み替える

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第445回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第444回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第443回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP