[スポンサーリンク]

一般的な話題

2013年ノーベル化学賞は誰の手に?トムソンロイター版

[スポンサーリンク]

thomsonreuters2013.png

昨日、毎年ノーベル賞発表直前に公表される「トムソン・ロイター引用栄誉賞2013」が発表されました。医学・生理学、物理学、および化学分野の中心的な研究者28名が公表され、うち3名が日本人から選出されました。その中の細野秀雄教授(東工大、物理学分野として選出)は無機材料科学が専門であり、化学分野でもおかしくない「鉄系超伝導体の発見者」として著名な研究者です。この賞に選ばれる人材は過去20年以上にわたる学術論文の被引用数に基づいて、各分野の上位0.1パーセントにランクする研究者の中から選ばれており、引用数という観点でみると、無論各分野を率いてきたノーベル賞の候補者として相応しい研究者です。ここでは、化学分野の受賞者を今後のノーベル化学賞賞有力候補者として紹介したいと思います。

 

 

  • モジュール式クリックケミストリーの発展

thomson_click_chem_3.jpg「カチッと音を立てて結合する(Click)」という単語が示すとおり、簡単かつ選択的に結合をつくれる優れた化学反応を武器に、様々な機能性物質(医薬候補化合物、バイオプローブ、ソフトマテリアルなど)の開発を目指す化学――それがクリックケミストリー(Click Chemistry)[1]です。

スクリプス研究所バリー・シャープレス教授は2001年にこの概念を提唱しました。後にこの考え方は、生命化学・材料化学・医薬化学など多くの分野に影響を与えており、その研究数は現在も増加し続けています(参考:2007年までのクリックケミストリー論文一覧@Sharpless研)。クリックケミストリーの概念が初めて紹介された論文[1a]は、これまでになんと4000回以上も引用されています。

同じくスクリプス研究所に属するフォキン准教授フィン教授はシャープレス教授と共同で、クリックケミストリーのさらなる拡大・展開を目指した研究に現在注力しています。

フィン教授が行った代表的成果の一つに、ウィルスカプシド表面の化学修飾[2]があります。アジドもしくはアルキンで表面修飾したウィルスに、全体構造を壊さず蛍光分子などをくっつけることに成功したのです。反応点が多数存在する生体高分子を標的としてもクリックケミストリーの考えが有効機能することを示した重要な研究の一つです。加えてくっつけるものは光り物に限らず何でも構わないので、化学の力で生命を操れるかも?と思わせてくれる、驚きの成果と言えるでしょう。またフォキン准教授はクリックケミストリーでよく用いられるアジド-アルキン付加環化を大幅に加速する触媒系[3]を見いだしており、やはりこの化学の発展に欠かせない寄与をしています。

thomson_click_chem_2.png

(文献[1c]より引用・改変)

 

  • エームス試験の考案

thomson_Bruce_Ames.jpg

写真はWikipedia(en) より

Bruce Nathan Ames教授は米国カリフォルニア大学バークレー校のBiochemistry and Molecular Biologyの教授であり、オークランドChildren’s Hospital Oakland Research Instituteのsenior scientistです。数々の受賞歴があり、1997年には日本国際賞も受賞しています。いわゆるAmes試験の考案者で、1973年にまずその基本を発表し[4]、1983年に改良した方法を報告しており[5]、その論文は5200回以上の引用があります。

Ames試験(Ames test)はある物質が突然変異を引き起こす可能性があるかどうか(催突然変異性もしくは変異原性と呼びます)を見るための最も簡便な方法の一つです。正常な細胞にある物質を振りかけて、その細胞が突然変異したかどうかを判別するのは容易ではありません。いちいちDNA配列を全部読んで、変異したかどうかを判定しなければならないからです。ここで発想を転換して、最初から変異していてまともに生育できない細胞を用意しておき、そこに物質を振りかけるとどうなるでしょうか。その物質が突然変異を引き起こし、変異していたところが正常な遺伝子に戻ったら、細胞は増殖できるようになります。

thomson_Ames_test.png

図はWikipedia(en)のものを改変

実際には、サルモネラ菌の一種ネズミチフス菌(Salmonella typhimurium)のなかで、アミノ酸の一つであるヒスチジンを自身では生合成できなくなってしまった株をAmes試験に用います。菌を培養する培地には様々な彼らの栄養分が含まれていますが、ヒスチジンを制限して培養します。物質の影響で突然変異を起こし、ヒスチジンを自身で生合成できるようになった株は生育できるようになりますので、そのコロニーの数を数えるとどれくらい変異原性が強いのかを目で確認できるという原理です。なんと言っても目で確認できるというのは、特殊な装置や高額な試薬を必要としませんので非常に便利な方法と言えます。最近では大腸菌を用いたより検出感度の高い方法もあります。

ただし、微生物を用いた試験なので、厳密には私たちのような動物にも変異原性が当てはまるのかどうかは分かりません。ニトロ化合物などはAmes試験で陽性、すなわち変異原性有りと判定されがちですが、陽性を示してしまうニトログリセリンなんかは医薬品として用いられています。また、長期の変異原性を調べられるわけではないので、Ames試験で陰性だからといって安全という訳でもありません。様々な試験を組み合わせることが必要です。

Ames試験が大変素晴らしいことは疑いがありませんが、これが化学賞になるかというと、どうなんでしょうね

 

  • DNAナノテクノロジーへの貢献

thomsonreuters2013_1.png

最後はDNAナノテクノロジーへの貢献で、ポール・アリヴィサトスチャド・マーキンネッド・シーマン教授の3名です。結晶化しやすい高分子であるDNAで規則的構造体を合成することを提案し、その合成・機能化研究を行っています。1980年代にシーマン教授がDNAナノテクノロジーを提唱し[6]、2000年前半より爆発的に研究が進んでいる現在注目の分野です。上記写真の右側にあるのが、シーマン教授の代表作、DNAでつくったはじめたの三次元構造「シーマン立方体」(1991年)[7]。アリヴィサトス教授はDNAに限らずナノ構造体の権威[8]。 現在高インパクトファクターのNano Letter誌の編集長も務めています。昨年ウルフ賞も受賞し、ノーベル化学賞候補者として注目される研究者です。マーキン教授もバイオ材料を用いたナノ構造体では引用数が最多、中心的存在である化学者です。

 

この3件のテーマが今年のノーベル化学賞として選ばれるかは、ストックホルムのノーベル賞選定委員会と神のみぞ知るといったところですが、今年のノーベル化学賞も楽しみに待ちましょう!

 

  • 関連論文
[1] (a) Review: Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. [abstract]  (b) 日本語解説:「クリックケミストリーの概念と応用 提唱者の立場から」(PDF) (c) TCIによるクリックケミストリーの解説冊子(PDF)

[2] Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am.Chem. Soc. 2003, 125, 3192. DOI: 10.1021/ja021381e

[3] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. [Abstract]  (b) Wu, P.; Fokin, V. V. Aldrichimica Acta 2007, 40, 7. (c) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302. DOI: 10.1039/b904091a

[4] Revised methods for the Salmonella mutagenicity test. Maron, D. M., Ames, B. N. Mutat. Res113, 173-215 (1983). Doi: dx.doi.org/10.1016/0165-1161(83)90010-9

[5] Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection. Ames, B. N. Durston, W. E. Yamasaki, E., Lee, F. D. Proc. Natl. Acad. Sci. USA70, 2281-2285 (1973).

[6] Seeman, N. C,  J. Theoretical Biol 1982, 99,  237. DOI:10.1016/0022-5193(82)90002-9

[7]  Chen, J.; Seeman, N. C., Nature, 1991, 350, 631 DOI: 10.1038/350631a0

[8] 代表的論文  Alivisatos, A. P.; Science, 1996, 271, 933. DOI: 10.1126/science.271.5251.933

 

 

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. オキシトシンを「見える化」するツールの開発と応用に成功-謎に包ま…
  2. 資金洗浄のススメ~化学的な意味で~
  3. 第3のフラッシュ自動精製装置がアップグレード:分取クロマトグラフ…
  4. ブラウザからの構造式検索で研究を加速しよう
  5. 化学構造式描画のスタンダードを学ぼう!【基本編】
  6. 酵素を模倣した鉄錯体触媒による水溶液中でのメタンからメタノールへ…
  7. Ph.D.化学者が今年のセンター試験(化学)を解いてみた
  8. 思わぬ伏兵・豚インフルエンザ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 酢酸鉄(II):Acetic Acid Iron(II) Salt
  2. テオ・グレイ Theodore Gray
  3. ラリー・オーヴァーマン Larry E. Overman
  4. ACS Macro Letters創刊!
  5. 世界5大化学会がChemRxivのサポーターに
  6. 池袋PARCOで「におい展」開催
  7. ドラッグデザインにおいてのメトキシ基
  8. “アルデヒドを移し替える”新しいオレフィン合成法
  9. MOF 内の水分子吸着過程の解析とそれに基づく水蒸気捕集技術の向上
  10. 今度こそ目指せ!フェロモンでリア充生活

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP